Antibody-secreting plasma cells are nonrecirculatory and lodge in splenic red pulp, lymph node medullary cords, and bone marrow. The factors that regulate plasma cell localization are poorly defined. Here we demonstrate that, compared with their B cell precursors, plasma cells exhibit increased chemotactic sensitivity to the CXCR4 ligand CXCL12. At the same time, they downregulate CXCR5 and CCR7 and have reduced responsiveness to the B and T zone chemokines CXCL13, CCL19, and CCL21. We demonstrate that CXCL12 is expressed within splenic red pulp and lymph node medullary cords as well as in bone marrow. In chimeric mice reconstituted with CXCR4-deficient fetal liver cells, plasma cells are mislocalized in the spleen, found in elevated numbers in blood, and fail to accumulate normally in the bone marrow. Our findings indicate that as B cells differentiate into plasma cells they undergo a coordinated change in chemokine responsiveness that regulates their movements in secondary lymphoid organs and promotes lodgment within the bone marrow.
The control of IL-10 production and mechanisms that mediate synergy between IFN-gamma and TLR ligands are not well understood. We report that IFN-gamma augments induction of TNFalpha by TLR ligands, immune complexes, and zymosan by suppressing IL-10 production and thereby interrupting Stat3-mediated feedback inhibition. IFN-gamma altered TLR2-induced signal transduction by increasing GSK3 activity and suppressing MAPK activation, leading to diminished IL-10 production. Inhibition of GSK3 or ablation of the GSK3beta gene ameliorated TLR2-induced peritonitis and arthritis. IFN-gamma suppressed the activity of CREB and AP-1, transcription factors that induce IL-10 expression and are regulated in part by MAPKs and GSK3. These results yield insight into mechanisms by which IFN-gamma regulates IL-10 production and TLR2-mediated inflammatory responses and identify inhibition of CREB and AP-1 as part of the macrophage response to IFN-gamma. GSK3 and CREB/AP-1 are key players in integrating IFN-gamma and TLR2 responses in innate immunity and inflammation.
The factors directing marginal zone B cells to the splenic marginal zone are not well understood. Here we report that FTY720, a drug that targets sphingosine 1-phosphate (S1P) receptors, induced marginal zone B cell migration into follicles. Marginal zone B cells expressed S1P receptors 1 and 3 (S1P(1) and S1P(3), respectively). Using gene-targeted mice, we show that S1P(1) but not S1P(3) was required for localization in the marginal zone. In mice lacking the chemokine CXCL13, S1P(1)-deficient marginal zone B cells reacquired a marginal zone distribution. Exposure to lipopolysaccharide or antigen caused marginal zone B cells to downregulate S1P(1) and S1P(3) and to migrate into the splenic white pulp. These data suggest that marginal zone B cell localization to the marginal zone depends on responsiveness to the blood lysophospholipid S1P, with S1P(1) signaling overcoming the recruiting activity of CXCL13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.