Chimeric antigen receptor (CAR) modified T cell therapy has revolutionized the treatment of relapsed and refractory hematological malignancies. Through targeting of the CD19 antigen on B cells durable remissions have been achieved in patients with B cell non-Hodgkin lymphoma and acute lymphoblastic lymphoma. Despite impressive responses, multiple escape mechanisms to evade CAR-T cell therapy have been identified, among which the most common is loss of the target antigen. In this review we will highlight outcomes to date with CD19 CAR-T cell therapy, describe the current limitations of single targeted CAR-T therapies, review identified tumor escape mechanisms, and lastly discuss novel strategies to overcome resistance via multi-targeted CAR-T cells.
Considerable progress has been made in cancer therapeutics recently with targeted strategies that are efficacious and less toxic. Immunotherapy and chimeric antigen receptor (CAR) T-cells are increasingly being evaluated in a variety of tumors in the relapsed/refractory as well as frontline disease settings, predominantly in hematologic malignancies (HM). Despite impressive outcomes in select patients, there remains significant heterogeneity in clinical response to CAR T-cells. The gut microbiome has emerged as one of the key host factors that could potentially be modulated to enhance responses to immunotherapy. Several recent human studies receiving immunotherapy showed a significantly superior response and survival in patients with the more diverse gut microbiome. Currently, it is unknown if gut microbiota modulates anti-tumor responses to CAR T-cells. Based on molecular and immunological understanding, we hypothesize that strategically manipulating gut microbiota may enhance responses to CAR T-cells. In this review, we further discuss resistance mechanisms to CAR T-cells in HM, potential approaches to overcome resistance by harnessing gut microbiota and other related novel strategies.
Introduction. Medical trainees fear disclosing psychological distress and rarely seek help. Social sharing of difficult experiences can reduce stress and burnout. Drawing comics is one way that has been used to help trainees express themselves. The authors explore reasons why some medical trainees chose to draw comics depicting stressful situations that they had never shared with anyone before. Methods. Trainees participated in a comic drawing session on stressors in medicine. Participants were asked if they had ever shared the drawn situation with anyone. Participants who had not previously shared were asked what prevented them and why they shared it now. The authors performed content analysis of the responses. Results. Of two hundred forty participants, forty-six (19.2%) indicated sharing an experience for the first time. Analysis of the responses revealed dedicated time and space was essential to sharing, trainee insecurity was a barrier, and comics were perceived as a safe way to communicate. Discussion. Depicting a stressful situation may be beneficial for trainees who drew an experience they had never shared before. Providing trainees with the opportunity to externalize their experience and create a community for sharing tough experiences may be one way to reduce trainee stress and burnout.
Multiple myeloma (MM) remains largely incurable despite enormous improvement in the outcome of patients [1]. Over the past decade, we have witnessed the “era of monoclonal antibody (moAb)”, setting new benchmarks in clinical outcomes for relapsed and newly diagnosed MM. Due to their excellent efficacy and relative safe toxicity profile, moAbs in combination with immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) have become the new backbone of upfront anti-MM therapy. Yet, most patients will eventually relapse and patients who become refractory to IMiDs, PIs and moAbs have a dismal outcome. Emerging T-cell directing therapies, such as bispecific antibody (bsAb) and chimeric antigen receptor T cells (CAR T) have shown unprecedented responses and outcomes in these heavily pretreated and treatment-refractory patients. Their clinical efficacy combined with high tolerability will likely lead to the use of these agents earlier in the treatment course and there is great enthusiasm that a combination of T cell directed therapy with moAbs can lead to long duration remission in the near future, possibly even without the need of high dose chemotherapy and stem cell transplantation. Herein, we summarize the role of naked moAbs in MM in the context of newer immunotherapeutic agents like bsAb and CAR T therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.