Animal and plant species often face multiple threats simultaneously. We explored the relative impact of three major threats on populations of the endangered San Joaquin kit fox. This species was once widely distributed across the southern San Joaquin Valley, California, USA, but agriculture and urban development have replaced much of its natural habitat. We modeled impacts of climate change, land-use change, and rodenticide exposure on kit fox populations using a spatially explicit, individual-based population model from 2000 to 2050 for the Central Valley, California. Our study indicates that land-use change will likely have the largest impact on kit fox populations. Land development has the potential to decrease populations by approximately 15% under a compact growth scenario in which projected population increases are accommodated within existing urban areas, and 17% under a business-as-usual scenario in which future population growth increases the developed area around urban centers. Plausible scenarios for exposure to pesticides suggest a reduction in kit fox populations by approximately 13%. By contrast, climate change has the potential to ameliorate some of these impacts. Climate-change induced vegetation shifts have the potential to increase total available kit fox habitat and could drive population increases of up to 7%. These vegetation shifts could also reduce movement barriers and create opportunities for hybridization between the endangered San Joaquin kit fox and the more widely distributed desert kit fox, found in the Mojave Desert. In contrast to these beneficial impacts, increasing climate extremes raise the probability of the kit fox population dropping below critical levels. Taken together, these results paint a complex picture of how an at-risk species is likely to respond to multiple threats.
Urbanization imperils agriculture by converting farmland into uncultivable impervious surfaces and other uses that limit land productivity. Despite the considerable loss of productive croplands due to historic urbanization in the United States, little is known about the locations and magnitudes of extant agricultural land still under threat of future urban expansion. In this study, we developed a spatially explicit machine learning-based method to predict urban development through 2040 under a business-as-usual scenario and explored its occurrence on existing farmland. We found that if urban development continues at the same pace as that between 2001 and 2016, by 2040, highly developed areas and low-density residential areas will increase by 9.5 and 21 million acres, respectively. This increase would result in 18 million acres of agricultural land lost, fragmented, or compromised (~2% of total agricultural lands in 2016), with the remainder of projected development occurring on other types of natural and semi-natural lands. Of the affected agricultural lands, 6.2 million acres (34%) would be converted to uncultivable urban uses and 12 million acres (66%) to low-density residential uses. Agricultural land losses are projected to be greatest in fast-growing regions such as Texas, California, and the Southeast, and on the outskirts of metropolitan areas across the country, especially in the Midwest, where agricultural lands are more concentrated. The losses as a percentage of existing agricultural lands are projected to be highest along the East Coast, where many urban areas are forecasted to expand onto a limited remaining pool of cultivable lands. These findings can help guide the efforts of local, state, and federal policymakers to reduce land use competition between urban and agricultural systems and mitigate the impacts of projected urban expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.