Advancements in molecular genetics have revealed that hybridization may be common among plants, animals, and fungi, playing a role in evolutionary dynamics and speciation. While hybridization has been well-documented in pathogenic fungi, the effects of these processes on speciation in fungal lineages with different life histories and ecological niches are largely unexplored. Here we investigated the potential influence of hybridization on the emergence of morphologically and reproductively distinct asexual lichens. We focused on vagrant forms (growing obligately unattached to substrates) within a clade of rock-dwelling, sexually reproducing species in the Rhizoplaca melanophthalma (Lecanoraceae, Ascomycota) species complex. We used phylogenomic data from both mitochondrial and nuclear genomes to infer evolutionary relationships and potential patterns of introgression. We observed multiple instances of discordance between the mitochondrial and nuclear trees, including the clade comprising the asexual vagrant species R. arbuscula, R. haydenii, R. idahoensis, and a closely related rock-dwelling lineage. Despite well-supported phylogenies, we recovered strong evidence of a reticulated evolutionary history using a network approach that incorporates both incomplete lineage sorting and hybridization. these data suggest that the rock-dwelling western north American subalpine endemic R. shushanii is potentially the result of a hybrid speciation event, and introgression may have also played a role in other taxa, including vagrant species R. arbuscula, R. haydenii and R. idahoensis. We discuss the potential roles of hybridization in terms of generating asexuality and novel morphological traits in lichens. furthermore, our results highlight the need for additional study of reticulate phylogenies when investigating species boundaries and evolutionary history, even in cases with wellsupported topologies inferred from genome-scale data. open Scientific RepoRtS | (2020) 10:1497 | https://doi.org/10.1038/s41598-020-58279-x www.nature.com/scientificreports www.nature.com/scientificreports/ nuclear markers, which in turn can influence the genome in both adaptive and maladaptive ways 5,[19][20][21][22] . Adaptive introgression of mitochondrial DNA may play an important role in speciation and phylogeography 23,24 .While hybridization has been well-documented among pathogenic fungi 21,[25][26][27][28][29][30] , the role of hybridization on the process of speciation of fungal lineages with different life histories and ecological functions is not well understood, including among lichen-forming fungi. The role of gene flow and hybridization in lichen-forming fungal evolution has been a long-standing question [31][32][33][34][35] . Species boundaries in fungi, including symbiotic fungi such as lichen formers, have received substantial attention and become more robust with molecular sequence data 36 . However, processes involved in speciation in lichen-forming fungi have received far less attention. With a poor fossil record 37,38 and pote...
Disease registries should modernize their infrastructure to complement GIS technologies. Epidemiologists should understand GIS data limitations and consider potential biases introduced by incomplete or inaccurate geocoding.
Phylogenetics is crucial in the study of evolutionary processes and events transpiring in the course of species diversification. Phylogenetic studies within kingdom Plantae often reveal hybridization and introgression. Here, we study a subsection rife with historic hybridization and discuss the impacts of such processes on evolutionary trajectories. Aliciella subsection Subnuda comprises seven species of herbaceous plants occurring in Utah, the Navajo Nation, and the Four Corners region of North America. Previous molecular and morphological work left relationships in the subsection unresolved. Here, we use comparative DNA sequencing of nuclear ITS and chloroplast DNA regions and genome‐wide RAD‐seq data to clarify phylogenetic relationships and examine the role of hybridization in the subsection. We construct haplotype and nucleotype networks from chloroplast and nuclear ITS sequence matrices and compare nuclear and chloroplast phylogenies to identify multiple putative chloroplast capture events. The RAD‐seq maximum likelihood phylogeny and multispecies coalescent species tree robustly resolve relationships between six species‐level clades. We use STRUCTURE and HyDe on the RAD‐seq data to evaluate the influence of hybridization within the subsection. The HyDe results suggest that hybridization has occurred among all species in the subsection at some point in their history. Cytonuclear discordance reveals historic chloroplast capture, and we discuss potential causes of the observed discordance. Our study robustly resolves relationships in Aliciella subsection Subnuda and provides a framework for discussing its speciation despite a history of hybridization and introgression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.