Precise, repeatable genetic access to specific neurons via the GAL4/UAS system and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which mostly lack the single-cell resolution required for reliable cell type identification. Here we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 27,000 such adult central nervous systems.An anticipated use of this resource is to bridge the gap between electron microscopyidentified neurons and light microscopy-based intersectional genetic approaches such as the split-GAL4 system. Identifying the individual neurons that make up each GAL4 expression pattern improves the prediction of which GAL4 enhancer fragments best combine via split-GAL4 to target neurons of interest. To this end we have developed the NeuronBridge search tool, which matches these light microscope neuronal images to neurons in the recently published FlyEM hemibrain. This work thus provides a resource and search tool that will significantly enhance both the efficiency and efficacy of split-GAL4 targeting of EM-identified neurons and further advance Drosophila neuroscience.Meissner, et al., 2020Gen1 MCFO Phase 1 release
Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.
Cell invasion through basement membrane (BM) barriers is important in development, immune function, and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of actively invading cells in vivo remains elusive. Using the stereotyped timing of C. elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including TCTP (translationally controlled tumor protein). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling, and ribosome biogenesis analysis revealed a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also enrich near the AC endoplasmic reticulum (ER) Sec61 translocon and the endomembrane system expands prior to invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.
Cell invasion through basement membrane (BM) barriers is important in development, immune function, and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of cells actively transmigrating BM in vivo remains elusive. Using the stereotyped timing of C. elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including TCTP (Translationally Controlled Tumor Protein). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling, and ribosome biogenesis analysis revealed a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also strongly localize to the ACs endoplasmic reticulum (ER) and the endomembrane system expands prior to invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.