alpha-Tocopherol modulates two major signal transduction pathways centered on protein kinase C and phosphatidylinositol 3-kinase. Changes in the activity of these key kinases are associated with changes in cell proliferation, platelet aggregation, and NADPH-oxidase activation. Several genes are also regulated by tocopherols partly because of the effects of tocopherol on these two kinases, but also independently of them. These genes can be divided in five groups: Group 1. Genes that are involved in the uptake and degradation of tocopherols: alpha-tocopherol transfer protein, cytochrome P450 (CYP3A), gamma-glutamyl-cysteine synthetase heavy subunit, and glutathione-S-transferase. Group 2. Genes that are implicated with lipid uptake and atherosclerosis: CD36, SR-BI, and SR-AI/II. Group 3. Genes that are involved in the modulation of extracellular proteins: tropomyosin, collagen-alpha-1, MMP-1, MMP-19, and connective tissue growth factor. Group 4. Genes that are connected to adhesion and inflammation: E-selectin, ICAM-1 integrins, glycoprotein IIb, IL-2, IL-4, IL-1b, and transforming growth factor-beta (TGF-beta). Group 5. Genes implicated in cell signaling and cell cycle regulation: PPAR-gamma, cyclin D1, cyclin E, Bcl2-L1, p27, CD95 (APO-1/Fas ligand), and 5a-steroid reductase type 1. The transcription of p27, Bcl2, alpha-tocopherol transfer protein, cytochrome P450 (CYP3A), gamma-glutamyl-cysteine sythetase heavy subunit, tropomyosin, IL-2, and CTGF appears to be upregulated by one or more tocopherols. All the other listed genes are downregulated. Gene regulation by tocopherols has been associated with protein kinase C because of its deactivation by alpha-tocopherol and its contribution in the regulation of a number of transcription factors (NF-kappaB, AP1). A direct participation of the pregnane X receptor (PXR) / retinoid X receptor (RXR) has been also shown. The antioxidant-responsive element (ARE) and the TGF-beta-responsive element (TGF-beta-RE) appear in some cases to be implicated as well.