ObjectiveDefective mitochondrial function attributed to optic atrophy 1 (OPA1) mutations causes primarily optic atrophy and, less commonly, neurodegenerative syndromes. The pathomechanism by which OPA1 mutations trigger diffuse loss of neurons in some, but not all, patients is unknown. Here, we used a tractable induced pluripotent stem cell (iPSC)‐based model to capture the biology of OPA1 haploinsufficiency in cases presenting with classic eye disease versus syndromic parkinsonism.MethodsiPSCs were generated from 2 patients with OPA1 haploinsufficiency and 2 controls and differentiated into dopaminergic neurons. Metabolic profile was determined by extracellular flux analysis, respiratory complex levels using immunoblotting, and complex I activity by a colorimetric assay. Mitochondria were examined by transmission electron microscopy. Mitochondrial DNA copy number and deletions were assayed using long‐range PCR. Mitochondrial membrane potential was measured by tetramethylrhodamine methyl ester uptake, and mitochondrial fragmentation was assessed by confocal microscopy. Exome sequencing was used to screen for pathogenic variants.ResultsOPA1 haploinsufficient iPSCs differentiated into dopaminergic neurons and exhibited marked reduction in OPA1 protein levels. Loss of OPA1 caused a late defect in oxidative phosphorylation, reduced complex I levels, and activity without a significant change in the ultrastructure of mitochondria. Loss of neurons in culture recapitulated dopaminergic degeneration in syndromic disease and correlated with mitochondrial fragmentation.InterpretationOPA1 levels maintain oxidative phosphorylation in iPSC‐derived neurons, at least in part, by regulating the stability of complex I. Severity of OPA1 disease associates primarily with the extent of OPA1‐mediated fusion, suggesting that activation of this mechanism or identification of its genetic modifiers may have therapeutic or prognostic value. Ann Neurol 2018;83:915–925
Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that—despite their similar expression and spectral features—these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments.
One Sentence SummaryTwo medakafish non-visual c-type Opsins interact non-additively, impacting the levels of the preprohormone sst1b, as well as the voltage-gated sodium channel subunit scn12aa and-at least in part independently of the eyes-the amount of larval day-time rest. AbstractVertebrate behavior is strongly influenced by light. Photoreceptors, encoded by Opsins, are present inside the vertebrate brain and peripheral tissues. Their non-visual functions are largely enigmatic.We focus on tmt-opsin1b and 2, c-Opsins with ancestral-type sequence features, conserved across several vertebrate phyla and with partly similar expression. Their loss-of-function mutations differentially modulate medakafish behavior in a context-dependent manner.Specifically, differences in light conditions have differential effects depending on age and frequency of the light changes, part of which are mediated by TMT-Opsin1b acting outside the eyes, while the pre-pro-hormone sst1b is regulated by daylength via TMT-opsin1b in an eye-dependent manner. Analyses of tmt-opsin1b;tmt-opsin2 double mutants reveals partial complementation of single mutant behavioral and molecular phenotypes. Our work starts to disentangle the highly complex interactions of vertebrate non-visualOpsins, suggesting that tmt-opsin-expressing cells together with other Opsins provide detailed light information to the organism for behavioral fine-tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.