Microglia, often described as the brain-resident macrophages, play crucial roles in central nervous system development, maintenance, plasticity, and adaptation to the environment. Both aging and chronic stress promote microglial morphological and functional changes, which can lead to the development of brain pathologies including Parkinson’s disease (PD). Indeed, aging, and chronic stress represent main environmental risk factors for PD. In these conditions, microglia are known to undergo different morphological and functional changes. Inflammation is an important component of PD and disequilibrium between pro- and anti-inflammatory microglial functions might constitute a crucial component of PD onset and progression. Cumulated data also suggest that, during PD, microglia might lose beneficial functions and gain detrimental ones, in addition to mediating inflammation. In this mini-review, we aim to summarize the literature discussing the functional and morphological changes that microglia undergo in PD pathophysiology and upon exposure to its two main environmental risk factors, aging, and chronic stress.
Neuroprotective activity of estrogens is reported in Alzheimer disease and recently has also been suggested for Parkinson disease, a disease affecting more men than women. To characterize this estrogenic activity, we studied the effects of 17β‐ and 17α‐estradiol treatment (1 μg twice daily 5 days before, during the day of four MPTP (15 mg/kg) injections, and for the following 5 days) on dopamine striatal toxicity induced by the neurotoxin MPTP in retired breeder male C57BL/6 mice. Striatal dopamine concentrations and its metabolites dihydroxyphenylacetic acid and homovanillic acid measured by HPLC in MPTP mice that received 17β‐estradiol were comparable to control animals, whereas MPTP mice treated with saline or 17α‐estradiol showed important decreases of dopamine and its metabolites. Striatal serotonin and its metabolite 5‐hydroxyindoleacetic acid concentrations remained unchanged after MPTP and treatments with steroids. Striatal [3H]GBR 12935 binding autoradiography to the dopamine transporter was as extensively decreased and correlated with dopamine depletion in MPTP mice, whereas this transporter mRNA decrease in the substantia nigra pars compacta was less pronounced. Treatment with steroids did not significantly change [3H]GBR 12935 binding, whereas dopamine transporter mRNA levels were not significantly different from controls. Under the present paradigm in retired breeder male mice, our results show dopaminergic and stereospecificity of estradiol to augment dopamine levels in MPTP‐lesioned mice without protecting against the extensive loss of dopamine terminals and moderate cell body loss. Synapse 37:245–251, 2000. © 2000 Wiley‐Liss, Inc.
The influence of mechanical and electrical anharmonicity on the intensity of X—H stretching vibrations is investigated by means of model calculations in relation to hydrogen bonding. It is found that while both kinds of anharmonicities have a significant effect on the intensity, they cannot explain the characteristic increase in intensity of the fundamental and the equally characteristic decrease in the intensity of the first overtone. It is shown that not only the first but both these phenomena are due to the large value of the first derivative of the dipole moment in hydrogen bonded systems. This is linked to the possibility that the effect of electrical anharmonicity (d2μ/dQ2) might be cancelled by a high value of (dμ/dQ)c in the expression of the overtone intensity.
Infrared measurements show that fluorocarbons containing higher halogens are able to open O—H---O, N—H---N, S—H---S, N—H---O=C, type hydrogen bonds. This is probably due to a competitive mechanism of association consisting in the formation of donor–acceptor complexes. It is suggested that the breaking or perturbation of hydrogen bonds by this mechanism is of importance for the explanation of the anesthetic activity of these compounds.
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.