Summary De novo mutation plays an important role in Autism Spectrum Disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes, and may also include nucleotide-substitution hotspots. We investigated global patterns of germline mutation by whole genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing datasets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans.
Background/PurposePhosphoglucomutase-1 deficiency is a subtype of congenital disorders of glycosylation (PGM1-CDG). Previous case-reports in PGM1-CDG patients receiving oral D-galactose (D-gal) showed clinical improvement. So far no systematic in vitro and clinical studies assessed safety and benefits of D-gal supplementation. In a prospective pilot study, we evaluated the effects of oral D-gal in nine patients.Methods/ResultsD-gal supplementation was increased to 1.5 g/kg/day (maximum 50 g/day) in three increments over 18 weeks. Laboratory studies were performed before and during treatment to monitor safety and effect on serum transferrin-glycosylation, coagulation, liver and endocrine function. Additionally, the effect of D-gal on cellular glycosylation was characterized in vitro.Eight patients were compliant with D-gal supplementation. No adverse effects were reported. Abnormal baseline results (ALT/AST/aPTT) improved or normalized already using 1g/kg/day D-gal. Antithrombin-III levels and Transferrin-glycosylation showed significant improvement, and increase in galactosylation and whole glycan content. In vitro studies before treatment showed N-glycan hyposialylation, altered O-linked glycans, abnormal LLO-profile, and abnormal nucleotide-sugars in patient fibroblasts. Most cellular abnormalities improved or normalized following D-gal treatment.ConclusionD-gal increased both UDP-Glc and UDP-gal levels and improved LLO fractions in concert with improved glycosylation in PGM1-CDG. Oral D-gal supplementation is a safe and effective treatment for PGM1-CDG in this pilot study. Transferrin glycosylation and ATIII levels were useful trial end points. Larger, longer duration trials are ongoing.
We established a scoring algorithm to reliably evaluate disease severity in patients with PGM1-CDG on the basis of their clinical history and presentation. We also identified 5 clinical features that are predictors of disease severity; 2 of these features can be evaluated by physical examination, without the need for specific diagnostic testing and thus allow for rapid assessment and initiation of therapy.
Almost 50 inborn errors of metabolism have been described due to congenital defects in N-linked glycosylation. These phenotypically diverse disorders typically present as clinical syndromes, affecting multiple systems including the central nervous system, muscle function, transport, regulation, immunity, endocrine system, and coagulation. An increasing number of disorders have been discovered using novel techniques that combine glycobiology with next-generation sequencing or use tandem mass spectrometry in combination with molecular gene-hunting techniques. The number of “classic” congenital disorders of glycosylation (CDGs) due to N-linked glycosylation defects is still rising. Eight novel CDGs affecting N-linked glycans were discovered in 2013 alone. Newly discovered genes teach us about the significance of glycosylation in cell–cell interaction, signaling, organ development, cell survival, and mosaicism, in addition to the consequences of abnormal glycosylation for muscle function. We have learned how important glycosylation is in posttranslational modification and how glycosylation defects can imitate recognizable, previously described phenotypes. In many CDG subtypes, patients unexpectedly presented with long-term survival, whereas some others presented with nonsyndromic intellectual disability. In this review, recently discovered N-linked CDGs are described, with a focus on clinical presentations and therapeutic ideas. A diagnostic approach in unsolved N-linked CDG cases with abnormal transferrin screening results is also suggested.
Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.