Human brown adipose tissue (BAT) has been detected in adults but was recently suggested to be of brite/beige origin. We collected BAT from the supraclavicular region in 21 patients undergoing surgery for suspected cancer in the neck area and assessed the gene expression of established murine markers for brown, brite/beige, and white adipocytes. We demonstrate that a classical brown expression signature, including upregulation of miR-206, miR-133b, LHX8, and ZIC1 and downregulation of HOXC8 and HOXC9, coexists with an upregulation of two newly established brite/beige markers, TBX1 and TMEM26. A similar mRNA expression profile was observed when comparing isolated human adipocytes from BAT and white adipose tissue (WAT) depots, differentiated in vitro. In conclusion, our data suggest that human BAT might consist of both classical brown and recruitable brite adipocytes, an observation important for future considerations on how to induce human BAT.
Highlights d Identification of the first human brown fat secretome d Comparative analysis of the secretomes of human brown and white adipocytes d 101 proteins were exclusively identified in the secretome of brown adipocytes d EPDR1 is a novel batokine important for brown fat commitment
Brown fat dissipates energy as heat and protects against obesity. Here, we identified nuclear factor I-A (NFIA) as a transcriptional regulator of brown fat by a genome-wide open chromatin analysis of murine brown and white fat followed by motif analysis of brown-fat-specific open chromatin regions. NFIA and the master transcriptional regulator of adipogenesis, PPARγ, co-localize at the brown-fat-specific enhancers. Moreover, the binding of NFIA precedes and facilitates the binding of PPARγ, leading to increased chromatin accessibility and active transcription. Introduction of NFIA into myoblasts results in brown adipocyte differentiation. Conversely, the brown fat of NFIA knockout mice displays impaired expression of the brown-fat-specific genes and reciprocal elevation of muscle genes. Finally, expression of NFIA and the brown-fat-specific genes is positively correlated in human brown fat. These results indicate that NFIA activates the cell-type-specific enhancers and facilitates the binding of PPARγ for controlling the brown fat gene program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.