Children with learning problems often cannot discriminate rapid acoustic changes that occur in speech. In this study of normal children and children with learning problems, impaired behavioral discrimination of a rapid speech change (/dalpha/versus/galpha/) was correlated with diminished magnitude of an electrophysiologic measure that is not dependent on attention or a voluntary response. The ability of children with learning problems to discriminate another rapid speech change (/balpha/versus/walpha/) also was reflected in the neurophysiology. These results indicate that some children's discrimination deficits originate in the auditory pathway before conscious perception and have implications for differential diagnosis and targeted therapeutic strategies for children with learning disabilities and attention disorders.
As perception improved, N1-P2 amplitude increased. These changes in waveform morphology are thought to reflect increases in neural synchrony as well as strengthened neural connections associated with improved speech perception. These findings suggest that the N1-P2 complex may have clinical applications as an objective physiologic correlate of speech-sound representation associated with speech-sound training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.