γ-Gliadins are an important component of wheat seed storage proteins. Four novel γ-gliadin genes (Gli-ng1 to Gli-ng4) were cloned from wheat (Triticum aestivum) and Aegilops species. The novel γ-gliadins were much smaller in molecular size when compared to the typical γ-gliadins, which was caused by deletion of the non-Repetitive domain, Glutamine-rich region, 3' part of the Repetitive domain and 5' part of the C-terminal, possibly due to illegitimate recombination between the repetitive domain and the C-terminal. As a result, Gli-ng1 and Gli-ng4 only contained two and three cysteine residues, respectively. Gli-ng1, as the representative of novel γ-gliadin genes, has been sub-cloned into an E. coli expression system. SDS-PAGE indicated that the both cysteine residues of Gli-ng1 could participate in the formation of intermolecular disulphide bonds in vitro. Successful cloning of Gli-ng1 from seed cDNA of T. aestivum cv 'Chinese Spring' suggested that these novel γ-gliadin genes were normally transcribed during the development of seeds. Phylogenic analysis indicated that the four novel γ-gliadin genes had a closer relationship with those from the B(S) genome of wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.