Community resilience has been addressed across multiple disciplines including environmental sciences, engineering, sociology, psychology, and economics. Interest in community resilience gained momentum following several key natural and human-caused hazards in the United States and worldwide. To date, a comprehensive community resilience model that encompasses the performance of all the physical and socio-economic components from immediate impact through the recovery phase of a natural disaster has not been available. This paper summarizes a literature review of previous community resilience studies with a focus on natural hazards, which includes primarily models of individual infrastructure systems, their interdependencies, and community economic and social systems. A series of national and international initiatives aimed at community resilience are also summarized in this study. This paper suggests extensions of existing modeling methodologies aimed at developing an improved, integrated understanding of resilience that can be used by policy-makers in preparation for future events.
Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities’ well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=8b2bceaa-5a38-4c47-82c0-4c960717dee8 http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=8b2bceaa-5a38-4c47-82c0-4c960717dee8 1 Risk-Based Decision Making for Sustainable and Resilient Infrastructure SystemsZoubir Lounis 1 and Therese P. McAllister 2 Abstract: The development of infrastructure systems that are sustainable and resilient is a challenging task that involves a broad range of performance indicators over the system life cycle that affect system functionality and recovery. Sustainability indicators address economic, social, and environmental performance metrics and resilient indicators address strength, functionality, and recovery time metrics following a hazard event. Sustainable systems consider environmental impact and conservation of n on-renewable resources over the life of the system. Resilient systems consider performance levels relative to potential damage levels and recovery times from events. Both concepts address adequate system performance and life cycle costs, but put a different emphasis on other indicators. Numerous sources of uncertainties associated with the life cycle performance of infrastructure systems require the use of a risk-informed decision making approach to properly account for uncertainties and to identify cost-effective strategies to manage risk. A framework for risk-informed decision-making for the life cycle performance of infrastructure facilities that includes consideration of sustainability and resilience is presented. Separate examples are provided for the same highway bridge deck system to illustrate sustainable and resilient performance objectives with the design and rehabilitation of highway bridge decks. The sustainability assessment considers the effect of corrosion degradation mechanisms on life cycle costs, environmental impact (CO 2 and waste), and social impacts (accidents and user time) while maintaining service life and structural safety. The resilience assessment considers the effect of seismic hazard events on structural damage levels, and ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.