Our aim was to examine secondary image formation in the anterior segment caused by peripheral light focusing (PLF) in the human cornea, and in particular the crystalline lens. Non-sequential ray-tracing (OptiCAD) was applied to an anatomically based human eye model, which incorporates a gradient index crystalline lens. For analysis of the limbal effect, we varied the incident angle from 100 to 122 degrees, while for the crystalline lens effect, the incident angle was varied from 60 to 90 degrees. The corneal shapes studied included central radii from 7.4 to 8.2 mm with a range of shape factors. In each case, we computed the peak and average intensities, and the area of exposure at the limbus or lens periphery. The computation was repeated with a previous model eye for comparison. For the limbal effect, a peak intensity gain of x22.5 was found at an incident angle of 104 degrees which compares well with previous results. The average intensity gain at this angle was x7.5 over an area of 0.23 mm2. Steeper corneal curvature produced a greater PLF effect. For the crystalline lens effect, maximum UVA (365 nm) intensity gain peaked at x8.6 at 84 degrees with average intensity gain of x2.3. The area of UVA exposure peaked at 4.7 mm2 at 70 degrees. A relatively wide range (30 degrees ) of incident angles produced peak PLF gains of x3 or more in the lens. Significant focusing of light is directed to the nasal limbus, and to a lesser extent to the crystalline lens over a broad range of incident angles. PLF in the nasal cornea is reduced by an order of magnitude when a UV-blocking soft contact lens is used. The concentration levels and intraocular sites of PLF action on UV and visible light suggest a new mechanism of phakic dysphotopsia and lens phototoxicity.
Considering the maximum potential amounts of axial shifts available, 1E-IOLs were predicted to provide 1.0 D of accommodation or less and 2E-IOLs were predicted to provide up to 3.0 D to 4.0 D depending on design configuration and amount of axial shift achievable. Potential issues relating to accommodative aniseikonia and spherical aberration have been identified.
Off-axis light incident at the temporal cornea formed intense foci in the nasal edge of the IOL. Multiple secondary images can be formed. These spots constitute glare sources and may be of sufficient intensity to disturb vision. These findings indicate that off-axis light may be an important contributor to some disability glare problems and that IOL edge design should be reevaluated to minimize dysphotopsia associated with peripheral focusing effects.
Phaco-Ersatz is a surgical procedure for restoring accommodation in which the presbyopic crystalline lens is replaced by a flexible polymer gel in the lens capsule. We assessed the feasibility of simultaneously correcting ametropia while restoring accommodation using Phaco-Ersatz by utilizing polymer gel of the appropriate refractive index. Computation results using paraxial equations and ray tracing on two model eyes indicate that although this approach might be feasible for the hypermetrope, its usefulness for correcting myopia is limited, principally due to significant reductions in the resultant amplitude of accommodation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.