Acrp30/adiponectin is an adipocyte-specific secretory protein that has recently been implicated as a mediator of systemic insulin sensitivity with liver and muscle as target organs. Acrp30 is found as two forms in serum, as a lower molecular weight trimer-dimer and a high molecular weight complex. Little is know about the regulation and significance of these Acrp30 complexes in serum and about the events that lead to the generation of the bioactive ligand. Here, we show that there is a profound sexual dimorphism of Acrp30 levels and complex distribution in serum. Female mice display significantly higher levels of the high molecular weight complex in serum than males. In both females and males, levels of the high molecular weight complex are significantly reduced in response to a systemic increase of insulin. The ratio of the two complexes is restored upon normalization of glucose levels. Structurally, we show that oligomer formation of Acrp30 critically depends on disulfide bond formation mediated by Cys-39. Mutation of Cys-39 results in trimers that are subject to proteolytic cleavage in the collagenous domain. Surprisingly, Acrp30(C39S) or wild-type Acrp30 treated with dithiothreitol are significantly more bioactive than the higher order oligomeric forms of the protein with respect to reduction of serum glucose levels. Furthermore, treatment of primary hepatocytes with trimeric and higher order forms of Acrp30 confirms that the increased bioactivity seen in vivo is reflected in an augmented potency to reduce glucose output in the presence of gluconeogenic stimuli. Combined, these results shed new light on the regulation of this complex protein and suggest a new model for in vivo activation of the protein, implicating a serum reductase activity.Adipose has been under appreciated as an endocrine tissue for decades because of the prevalent opinion that it served merely as storage for lipids. Recently, however, the importance of adipocytes to whole body energy homeostasis and metabolism has been underscored by several reports focusing on secreted products of adipocytes (1-4). There has been increased interest in adipose tissue as an endocrine organ, and several of these secreted proteins, termed adipokines, are currently undergoing extensive study regarding roles as divergent as feeding behavior to cardiovascular protection. For instance, leptin, the gene disrupted in ob/ob mice, has central roles in the hypothalamus, as well as peripheral effects in liver, muscle, and endothelial cells (5). Other adipose-secreted products, such as tumor necrosis factor ␣ and adipsin (complement factor D), have well established functions in innate immunity (6 -9). The recently identified adipokine resistin has been implicated as a modulator of insulin sensitivity and is also being studied for its effects on metabolism (4, 10).Acrp30 (also known as adiponectin, AdipoQ, and GBP28) is an adipokine exclusively synthesized and secreted by adipocytes (11-14). Acrp30 has recently been shown to influence glucose homeostasis and insulin se...
Oligomerization by the formation of alpha-helical bundles is common in many proteins. The crystal structure of a parallel pentameric coiled coil, constituting the oligomerization domain in the cartilage oligomeric matrix protein (COMP), was determined at 2.05 angstroms resolution. The same structure probably occurs in two other extracellular matrix proteins, thrombospondins 3 and 4. Complementary hydrophobic interactions and conserved disulfide bridges between the alpha helices result in a thermostable structure with unusual properties. The long hydrophobic axial pore is filled with water molecules but can also accommodate small apolar groups. An "ion trap" is formed inside the pore by a ring of conserved glutamines, which binds chloride and probably other monatomic anions. The oligomerization domain of COMP has marked similarities with proposed models of the pentameric transmembrane ion channels in phospholamban and the acetylcholine receptor.
Subunit oligomerization of many proteins is mediated by coiled-coil domains. Although the basic features contributing to the thermodynamic stability of coiled coils are well understood, the mechanistic details of their assembly have not yet been dissected. Here we report a 13-residue sequence pattern that occurs with limited sequence variations in many two-stranded coiled coils and that is absolutely required for the assembly of the Dictyostelium discoideum actin-bundling protein cortexillin I and the yeast transcriptional activator GCN4. The functional relationship between coiled-coil ''trigger'' sequences was manifested by replacing the intrinsic trigger motif of GCN4 with the related sequence from cortexillin I. We demonstrate that these trigger sequences represent autonomous helical folding units that, in contrast to arbitrarily chosen heptad repeats, can mediate coiled-coil formation. Aside from being of general interest for protein folding, trigger motifs should be of particular importance in the protein de novo design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.