Background The US opioid epidemic has led to similar concerns about prescribed opioids in the UK. In new users, initiation of or escalation to more potent and high dose opioids may contribute to long-term use. Additionally, physician prescribing behaviour has been described as a key driver of rising opioid prescriptions and long-term opioid use. No studies to our knowledge have investigated the extent to which regions, practices, and prescribers vary in opioid prescribing whilst accounting for case mix. This study sought to (i) describe prescribing trends between 2006 and 2017, (ii) evaluate the transition of opioid dose and potency in the first 2 years from initial prescription, (iii) quantify and identify risk factors for long-term opioid use, and (iv) quantify the variation of long-term use attributed to region, practice, and prescriber, accounting for case mix and chance variation. Methods and findings A retrospective cohort study using UK primary care electronic health records from the Clinical Practice Research Datalink was performed. Adult patients without cancer with a new prescription of an opioid were included; 1,968,742 new users of opioids were identified. Mean age was 51 ± 19 years, and 57% were female. Codeine was the most commonly prescribed opioid, with use increasing 5-fold from 2006 to 2017, reaching 2,456 prescriptions/ 10,000 people/year. Morphine, buprenorphine, and oxycodone prescribing rates continued to rise steadily throughout the study period. Of those who started on high dose (120-199 morphine milligram equivalents [MME]/day) or very high dose opioids (�200 MME/day), 10.3% and 18.7% remained in the same MME/day category or higher at 2 years, respectively. Following opioid initiation, 14.6% became long-term opioid users in the first year. In the fully adjusted model, the following were associated with the highest adjusted odds ratios (aORs) for long-term use: older age (�75 years, aOR 4.59, 95% CI 4.48-4.70, p < 0.001; 65-74 years, aOR 3.77, 95% CI 3.68-3.85, p < 0.001, compared to <35 years), social deprivation (Townsend score quintile 5/most deprived, aOR 1.56, 95% CI 1.
PurposeReal‐world data for observational research commonly require formatting and cleaning prior to analysis. Data preparation steps are rarely reported adequately and are likely to vary between research groups. Variation in methodology could potentially affect study outcomes. This study aimed to develop a framework to define and document drug data preparation and to examine the impact of different assumptions on results.MethodsAn algorithm for processing prescription data was developed and tested using data from the Clinical Practice Research Datalink (CPRD). The impact of varying assumptions was examined by estimating the association between 2 exemplar medications (oral hypoglycaemic drugs and glucocorticoids) and cardiovascular events after preparing multiple datasets derived from the same source prescription data. Each dataset was analysed using Cox proportional hazards modelling.ResultsThe algorithm included 10 decision nodes and 54 possible unique assumptions. Over 11 000 possible pathways through the algorithm were identified. In both exemplar studies, similar hazard ratios and standard errors were found for the majority of pathways; however, certain assumptions had a greater influence on results. For example, in the hypoglycaemic analysis, choosing a different variable to define prescription end date altered the hazard ratios (95% confidence intervals) from 1.77 (1.56‐2.00) to 2.83 (1.59‐5.04).ConclusionsThe framework offers a transparent and efficient way to perform and report drug data preparation steps. Assumptions made during data preparation can impact the results of analyses. Improving transparency regarding drug data preparation would increase the repeatability, reproducibility, and comparability of published results.
BackgroundFree-text medication prescriptions contain detailed instruction information that is key when preparing drug data for analysis. The objective of this study was to develop a novel model and automated text-mining method to extract detailed structured medication information from free-text prescriptions and explore their variability (e.g. optional dosages) in primary care research databases.MethodsWe introduce a prescription model that provides minimum and maximum values for dose number, frequency and interval, allowing modelling variability and flexibility within a drug prescription. We developed a text mining system that relies on rules to extract such structured information from prescription free-text dosage instructions. The system was applied to medication prescriptions from an anonymised primary care electronic record database (Clinical Practice Research Datalink, CPRD).ResultsWe have evaluated our approach on a test set of 220 CPRD prescription free-text directions. The system achieved an overall accuracy of 91 % at the prescription level, with 97 % accuracy across the attribute levels. We then further analysed over 56,000 most common free text prescriptions from CPRD records and found that 1 in 4 has inherent variability, i.e. a choice in taking medication specified by different minimum and maximum doses, duration or frequency.ConclusionsOur approach provides an accurate, automated way of coding prescription free text information, including information about flexibility and variability within a prescription. The method allows the researcher to decide how best to prepare the prescription data for drug efficacy and safety analyses in any given setting, and test various scenarios and their impact.Electronic supplementary materialThe online version of this article (doi:10.1186/s12911-016-0255-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.