An adjoint field approach is used to formulate a general numerical framework for Fisher information-based sensitivity analysis in electrical impedance tomography. General expressions are given for the gradients used in standard least-squares optimization, i.e. the Jacobian related to the forward problem, and it is shown that these gradient expressions are compatible with commonly used electrode models such as the shunt model and the complete electrode model. By using the adjoint field formulations together with a variational analysis, it is also shown how the computation of the Fisher information can be integrated with the gradient calculations used for optimization. It is furthermore described how the Fisher information analysis and the related sensitivity map can be used in a preconditioning strategy to obtain a wellbalanced parameter sensitivity and improved performance for gradient-based quasi-Newton optimization algorithms in electrical impedance tomography. Numerical simulations as well as reconstructions based on experimental data are used to illustrate the sensitivity analysis and the performance of the improved inversion algorithm in a four-electrode measurement set-up.
This paper presents a maximum likelihood based approach to data fusion for electromagnetic (EM) and electrical resistive (ER) tomography. The statistical maximum likelihood criterion is closely linked to the additive Fisher information measure, and it facilitates an appropriate weighting of the measurement data which can be useful with multiphysics inverse problems. The Fisher information is particularly useful for inverse problems which can be linearized similar to the Born approximation. In this paper, a proper scalar product is defined for the measurements and a truncated Singular Value Decomposition (SVD) based algorithm is devised which combines the measurement data of the two imaging modalities in a way that is optimal in the sense of maximum likelihood. As a multiphysics problem formulation with applications in geophysics, the problem of tunnel detection based on EM and ER tomography is studied in this paper. To illustrate the connection between the Green's functions, the gradients and the Fisher information, two simple and generic forward models are described in detail regarding two-dimensional EM and ER tomography, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.