Lung cancer remains responsible for more deaths worldwide than any other cancer, but recently there has been a significant shift in the clinical paradigm regarding the initial management of subjects at high risk for this disease. Low-dose CT has demonstrated significant improvements over planar x-ray screening for patient prognoses and is now performed in the United States. Specificity of this modality, however, is poor, and the additional information from PET has the potential to improve its accuracy. Routine screening requires consideration of the effective dose delivered to the patient, and this work investigates image quality of PET for low-dose conditions, in the context of lung lesion detectability. Reduced radiotracer doses were simulated by randomly discarding counts from clinical lung cancer scans acquired in list-mode. Bias and reproducibility of lesion activity values were relatively stable even at low total counts of around 5 million trues. Additionally, numeric observer models were developed and trained with the results of 2 physicians and 3 postdoctoral researchers with PET experience in a detection task; detection sensitivity of the observers was well correlated with lesion signal-to-noise ratio. The models were used prospectively to survey detectability of lung cancer lesions, and the findings suggested a lower limit around 10 million true counts for maximizing performance. Under the acquisition parameters used in this study, this translates to an effective patient dose of less than 0.4 mSv, potentially allowing a complete low-dose PET/CT lung screening scan to be obtained under 1 mSv.
We confirmed the potential of F-NaF PET/CT imaging to detect vulnerable coronary lesions. Moreover, we demonstrated proof-of-principle thatF-NaF concurrently detects myocardial scar tissue.
Quantitative multiparametric imaging is a potential key application for Positron Emission Tomography/Magnetic Resonance (PET/MR) hybrid imaging. To enable objective and automatic voxel-based multiparametric analysis in whole-body applications, the purpose of this study was to develop a multimodality whole-body atlas of functional 18F-fluorodeoxyglucose (FDG) PET and anatomical fat-water MR data of adults. Image registration was used to transform PET/MR images of healthy control subjects into male and female reference spaces, producing a fat-water MR, local tissue volume and FDG PET whole-body normal atlas consisting of 12 male (66.6 ± 6.3 years) and 15 female (69.5 ± 3.6 years) subjects. Manual segmentations of tissues and organs in the male and female reference spaces confirmed that the atlas contained adequate physiological and anatomical values. The atlas was applied in two anomaly detection tasks as proof of concept. The first task automatically detected anomalies in two subjects with suspected malignant disease using FDG data. The second task successfully detected abnormal liver fat infiltration in one subject using fat fraction data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.