A simple and effective method of fabricating scaffolds with open pore structures was successfully used on several copolymers. The method, which is straightforward and fast, was developed to overcome problems such as low pore interconnectivity and to achieve thick three-dimensional scaffolds. Copolymers are of particular interest because it is possible to tune their mechanical and degradable properties, and in this work, copolymers of L-lactide (LLA) and trimethylene carbonate (TMC) were synthesized through ring-opening polymerization. The copolymers formed had molecular weights ranging from close to 60000 g/mol to over 300000 g/mol and they were composed of 12-55 molar percentages of TMC and 88-45 molar percentages of LLA. The synthesized copolymers were evaluated as scaffold materials using a combined phase separation and particulate leaching technique, in which sugar templates were used as the leachable porosifiers. Differences in molecular weights, molar compositions, and degrees of crystallinity were all factors that influenced the properties of the prepared scaffolds. The copolymers with high LLA contents and high degrees of crystallinity were best suited for the scaffold fabrication technique used and gave degradable scaffolds with interconnected pores.
Radical ring-opening polymerization of cyclic ketene acetals is a means to achieve novel types of aliphatic polyesters. 2-methylene-1,3-dioxe-5-pene is a sevenmembered cyclic ketene acetal containing an unsaturation in the 5-position in the ring structure. The double bond functionality enables further reactions subsequent to polymerization. The monomer 2-methylene-1,3-dioxe-5-pene was synthesized and polymerized in bulk by free radical polymerization at different temperatures, to determine the structure of the products and propose a reaction mechanism. The reaction mechanism is dependent on the reaction temperature. At higher temperatures, ring-opening takes place to a great extent followed by a new cyclization process to form the stable five-membered cyclic ester 3-vinyl-1,4-butyrolactone as the main reaction product. Thereby, propagation is suppressed and only small amounts of other oligomeric products are formed. At lower temperatures, the cyclic ester formation is reduced and oligomeric products containing both ring-opened and ringretained repeating units are produced at higher yield.
Highly porous functional scaffolds were obtained from linear and cross-linked multifunctional poly(ε-caprolactone) and poly(L-lactide). The polymers were synthesized by ring-opening polymerization of ε-caprolactone and L-lactide using poly(but-2-ene-1,4-diyl malonate) (PBM) as macroinitiator and stannous 2-ethylhexanoate. The presence of a double bond in each repeating unit of PBM enabled cross-linking of both scaffolds and films. Soft and flexible scaffolds were created from cross-linked PBM. The mechanical properties of scaffolds and films were evaluated under cyclic conditions, with a focus on the compositions and molecular weights. It was obvious that PBM in the polymers and its cross-linking ability resulted in tunable material characteristics, including an increased ability to recover after repeated loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.