In this paper we extend the deterministic sublinear FFT algorithm in Plonka et al. (Numer Algorithms 78:133–159, 2018. 10.1007/s11075-017-0370-5) for fast reconstruction of M-sparse vectors $${\mathbf{x}}$$ x of length $$N= 2^J$$ N = 2 J , where we assume that all components of the discrete Fourier transform $$\hat{\mathbf{x}}= {\mathbf{F}}_{N} {\mathbf{x}}$$ x ^ = F N x are available. The sparsity of $${\mathbf{x}}$$ x needs not to be known a priori, but is determined by the algorithm. If the sparsity M is larger than $$2^{J/2}$$ 2 J / 2 , then the algorithm turns into a usual FFT algorithm with runtime $${\mathcal O}(N \log N)$$ O ( N log N ) . For $$M^{2} < N$$ M 2 < N , the runtime of the algorithm is $${\mathcal O}(M^2 \, \log N)$$ O ( M 2 log N ) . The proposed modifications of the approach in Plonka et al. (2018) lead to a significant improvement of the condition numbers of the Vandermonde matrices which are employed in the iterative reconstruction. Our numerical experiments show that our modification has a huge impact on the stability of the algorithm. While the algorithm in Plonka et al. (2018) starts to be unreliable for $$M>20$$ M > 20 because of numerical instabilities, the modified algorithm is still numerically stable for $$M=200$$ M = 200 .
In a recent paper [3] we have proposed a deterministic stable sparse FFT algorithm for M-sparse vectors of length N = 2 J with runtime O(M 2 log 2 N) which generalizes the approach in [2]. Our method is based on a divide-and-conquer technique and requires to solve an equation system of Vandermonde type at each iteration step. To ensure numerical stability of the algorithm, the number of rows of the employed Vandermonde matrices at each step has been chosen adaptively in [3]. In this paper, we compare the results of [3] with a random sampling approach for determining the rows of the coefficient matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.