Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat (Triticum aestivum L. var. Capo) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.
The invasive Spanish slug (Arion vulgaris) is an important pest species in agriculture and horticulture in Europe. In the last decades it has spread across the continent where it outcompetes native slug and snail species, thus posing a threat for biodiversity. A popular anecdote suggests to promote Roman snails (Helix pomatia) in gardens because they are able to control A. vulgaris. We examined a potential interrelationship between these two species using a mesocosm experiment with lettuce plants. 13C-15N stable isotope labelling of lettuce allowed us to investigate interactions between Helix and Arion on weight gain/loss and herbivory. Additionally, we wanted to know whether different watering regimes (daily vs. every 3rd day watering of weekly amount) and earthworms alter these interactions. Egg predation of Helix on Arion eggs was further tested in a food-choice experiment. Arion showed a five times higher herbivory per body mass than Helix in a single-species setting. However, in mesocosms containing both species percentage of herbivory per body mass was significantly lower than in Arion-only mesocosms, especially when watered every three days. Overall isotope uptake via eaten lettuce was unaffected by the presence of the other species. Only very little predation (three out of 200 eggs) of Helix on Arion eggs was observed. Our results provide no evidence for a clear dismissal or confirmation of the popular gardener’s anecdote that Helix snails have a negative effect on Arion abundance or herbivory.
1. Translocation experiments can be used to study the factors limiting species' distributions and to infer potential drivers of successful colonisation during range shifts. 2. To study the expansion dynamics of the butterfly Pyrgus armoricanus in southern Sweden and to find out whether its distribution was limited by climate, translocation experiments were carried out within and 50-60 km beyond its natural range margin. Populations were monitored for 8 years following the translocation. 3. Although most translocation attempts failed, P. armoricanus was able to survive in two sites north of its current range limit. One of them eventually led to expansion and establishment of a viable metapopulation. Translocation success appeared to be independent of latitude, suggesting that climate is not the main factor determining the current northern distribution limits of this butterfly. 4. Population growth and secondary spread in the expanding population were positively related to patch area and connectivity, while local habitat quality seemed to be less important. 5. The successful translocation and the importance of a well-connected patch network suggest that the current distribution of P. armoricanus is limited by its low dispersal ability combined with the fragmentation of its habitat, making it unlikely to track its changing climatic niche. Assisted migration could be an effective tool for such species, but long-term evidence for its effectiveness is not yet available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.