Mitotic cell detection is one of the challenging problems in the field of computational pathology. Currently, mitotic cell detection and counting are one of the strongest prognostic markers for breast cancer diagnosis. The clinical visual inspection on histology slides is tedious, error prone, and time consuming for the pathologist. Thus, automatic mitotic cell detection approaches are highly demanded in clinical practice. In this paper, we propose an end-to-end multi-task learning system for mitosis detection from pathological images which is named ''MitosisNet''. MitosisNet consist of segmentation, detection, and classification models where the segmentation, and detection models are used for mitosis reference region detection and the classification model is applied for further confirmation of the mitosis regions. In addition, an integrated multi-patch reference scheme and a novel confidence analysis strategy are introduced for improving overall detection performance during testing. The proposed system is evaluated on three different publicly available datasets including MITOSIS 2012, MITOSIS 2014, and Case Western Reserve University (CWRU) datasets. The experimental results demonstrate state-of-the-art performance compared to the existing methods and the proposed approach is fast enough in order to meet the requirements of clinical practice.
Due to cellular heterogeneity, cell nuclei classification, segmentation, and detection from pathological images are challenging tasks. In the last few years, Deep Convolutional Neural Networks (DCNN) approaches have been shown state-of-the-art (SOTA) performance on histopathological imaging in different studies. In this work, we have proposed different advanced DCNN models and evaluated for nuclei classification, segmentation, and detection. First, the Densely Connected Recurrent Convolutional Network (DCRN) model is used for nuclei classification. Second, Recurrent Residual U-Net (R2U-Net) is applied for nuclei segmentation. Third, the R2U-Net regression model which is named UD-Net is used for nuclei detection from pathological images. The experiments are conducted with different datasets including Routine Colon Cancer(RCC) classification and detection dataset, and Nuclei Segmentation Challenge 2018 dataset. The experimental results show that the proposed DCNN models provide superior performance compared to the existing approaches for nuclei classification, segmentation, and detection tasks. The results are evaluated with different performance metrics including precision, recall, Dice Coefficient (DC), Means Squared Errors (MSE), F1-score, and overall accuracy. We have achieved around 3.4% and 4.5% better F-1 score for nuclei classification and detection tasks compared to recently published DCNN based method. In addition, R2U-Net shows around 92.15% testing accuracy in term of DC. These improved methods will help for pathological practices for better quantitative analysis of nuclei in Whole Slide Images(WSI) which ultimately will help for better understanding of different types of cancer in clinical workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.