Fragrant rice is an important export commodity of Thailand and obtaining seasonal production estimates well in advance is important for marketing and stock management. Rice4cast is a software platform that has been developed to forecast rice yield several months prior to harvesting; it links a rice model with a Minimum Data Set (MDS) and Weather Research Forecast (WRF) data. The current study aimed to parameterize and evaluate the model and to demonstrate the use of the Rice4cast platform in forecasting seasonal KDML 105 rice yield and production with local data set. The study area encompassed 77 districts in Thailand, covering 0.94 of the total area of KDML 105 in the country. Minimum Data Sets for the 2013–2015 growing seasons were used for model parameterization and evaluation. The annual statistics from the Office of Agricultural Economics (OAE) were used as a reference basis and planted areas from the Geo-Informatics and Space Technology Development Agency (GISTDA) was used for production estimation. Model evaluation showed good to fairly good agreement between the predicted and reported OAE yield. Production forecasts, however, over-estimated the OAE values considerably, primarily because of the use of GISTDA planted areas that were larger than the harvested areas in the production estimates. Adjustment of the planted areas to account for damaged areas need to be explored further. Nevertheless, the results demonstrated the capability of yield predictions with the Rice4cast, making it a valuable tool for in-season estimates for fragrant rice yield and production.
Background As a method for sustainable agriculture, biofertilizers containing plant growth-promoting bacteria (PGPB) have been recommended as an alternative to chemical fertilizers. However, the short shelf-life of inoculants remains a limiting factor in the development of biofertilizer technology. The present study aimed to (i) evaluate the effectiveness of four different carriers (perlite, vermiculite, diatomite and coconut coir dust) on the shelf-life of S2-4a1 and R2-3b1 isolates over 60 days after inoculation and (ii) evaluate isolated bacteria as growth-promoting agents for coffee seedlings. Methods The rhizosphere soil-isolated S2-4a1 and plant-tissue-isolated R2-3b1 were chosen based on their P and K-solubilizing capacities and their ability to produce IAA. To evaluate the alternative carriers, two selected isolates were inoculated with the four different carriers and incubated at 25 °C for 60 days. The bacterial survival, pH, and EC in each carrier were investigated. In addition, coconut coir dust inoculated with the selected isolates was applied to the soil in pots planted with coffee (Coffea arabica). At 90 days following application, variables such as biomass and total N, P, K, Ca, and Mg uptakes of coffee seedlings were examined. Results The results showed that after 60 days of inoculation at 25 °C, the population of S2-4a1 and R2-3b1 in coconut coir dust carriers was 1.3 and 2.15 × 108 CFU g−1, respectively. However, there were no significant differences among carriers (P > 0.05). The results of the present study suggested that coconut coir dust can be used as an alternative carrier for S2-4a1 and R2-3b1 isolates. The significant differences in pH and EC were observed by different carriers (P < 0.01) after inoculation with both bacterial isolates. However, pH and EC declined significantly only with coconut coir dust during the incubation period. In addition, coconut coir dust-based bioformulations of both S2-4a1 and R2-3b1 enhanced plant growth and nutrient uptake (P, K, Ca, Mg), providing evidence that isolated bacteria possess additional growth-promoting properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.