Our data indicate that high serum Se levels (>120 microg/l) may influence the outcome of GD. This is important, as Se administration trials in GD, which are under discussion need to be performed with Se supplementation at higher dosages than used in autoimmune thyroiditis.
IA-2, a member of the protein tyrosine phosphatase family, represents a major target autoantigen in type 1 diabetes. To study the regulation of IA-2 gene expression, we used INS-1 insulinoma cells to analyze -cell signal transduction pathways as well as the effect of metabolic and hormonal factors involved in the regulation of the insulin secretory pathway. Quantitative competitive reverse transcriptase-polymerase chain reaction revealed that an increase of cellular cAMP mediated by forskolin (10 µmol/l, 24 h) or 3-isobutyl-1-methylxanthine (100 µmol/l, 24 h) induced maximal stimulation of IA-2 mRNA levels (451 ± 85 and 338 ± 86% compared with basal conditions; P < 0.001). In contrast, activation of protein kinase C (PKC) by short-term treatment with phorbol 12-myristate 13-acetate (PMA) (1 µmol/l, 6 h) did not alter IA-2 expression, whereas depletion of PKC by prolonged culturing (24 h) exerted a significant inhibition (57 ± 24%; P < 0.05). cAMP-dependent upregulation was confirmed by the findings that glucagon (10 µmol/l, 24-48 h) increased levels of IA-2 mRNA (190 ± 35%; P < 0.05), whereas short-term incubation with high glucose concentration showed no effect. However, prolonged incubation in high glucose (21 mmol/l) induced a time-and dose-dependent increase of IA-2 mRNA expression, reaching maximal values after 144 h (285 ± 68%; P < 0.05). These studies demonstrate that stimuli of insulin secretion that operate by activation of adenylate cyclase generating cAMP significantly increase IA-2 gene expression. In contrast, activation of PKC by high glucose concentration or PMA exerted no effect, suggesting that IA-2 gene expression is not simply coupled to insulin secretion, but may be involved in the fine regulation of -cell function. These findings may be important to clarify the function of IA-2 in -cells and elucidate mechanisms involved in the induction of autoimmunity to IA-2.
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis (B. pertussis). T helper 17 (Th17) cells have a central role in the resolution of the infection. Emerging studies document that type I interferons (IFNs) suppress Th17 differentiation and interleukin (IL)-17 responses in models of infection and chronic inflammation. As plasmacytoid dendritic cells (pDCs) are a major source of type I IFNs, we hypothesize that during B. pertussis infection in mice, pDC-derived IFNα inhibits a rapid increase in Th17 cells. We found that IFNα-secreting pDCs appear in the lungs during the early stages of infection, while a robust rise of Th17 cells in the lungs is detected at 15 days post-infection or later. The presence of IFNα led to reduced Th17 differentiation and proliferation in vitro. Furthermore, in vivo blocking of IFNα produced by pDCs during infection with B. pertussis infection resulted in early increase of Th17 frequency, inflammation, and reduced bacterial loads in the airways of infected mice. Taken together, the experiments reported here describe an inhibitory role for pDCs and pDC-derived IFNα in modulating Th17 responses during the early stages of B. pertussis infection, which may explain the prolonged nature of whooping cough.
Cytokines released from activated antigen-presenting cells and T-lymphocytes are crucially involved in the pathogenesis of type 1 diabetes. Previous studies have shown that proinflammatory cytokines play an important role in the induction of autoimmunity and beta-cell damage. Inhibition of insulin expression has been described, but their effects on other major target autoantigens, such as the tyrosine phosphatase-like protein IA-2, is not known. In the present study, we established sensitive real-time RT-PCR to measure IA-2, insulin, and inducible nitric oxide (NO) synthase (iNOS) mRNA expression. Rat insulinoma INS-1 cells were stimulated with IL-1beta, TNF-alpha, interferon (IFN)-gamma, and IL-2 as well as with two combinations of these cytokines (C1: IL-1beta + TNF-alpha + IFN-gamma; C2: TNF-alpha + IFN-gamma). Treatment with IL-1beta, TNF-alpha, or IFN-gamma alone caused a significant down-regulation of IA-2 and insulin mRNA levels in a time and dose-dependent manner, whereas IL-2 had no effect. Exposure to cytokine combinations strongly potentiates the inhibitory effects. Incubation of cells with C1 and C2 for 24 h induces a significant inhibition of IA-2 mRNA levels by 78% and 58%, respectively. Under these conditions, an up to 5 x 10(4)-fold increase of iNOS gene expression was observed. The hypothesis that the formation of NO is involved in IA-2 regulation was confirmed by the finding that the coincubation of C1 with 4 mM L-N(G)-monomethyL-L-arginine, an inhibitor of the iNOS, partly reversed the down-regulation of IA-2. Further, incubation with the synthetic NO-donor S-nitroso-N-acetyl-D-L-penicillamine significantly decreased IA-2 mRNA level to 51% of basal levels. In conclusion, we have demonstrated for the first time that IL-1beta, TNF-alpha, and IFN-gamma exert a strong inhibitory effect on expression of the diabetes autoantigen IA-2. The action of IL-1beta may be partly mediated by the activation of the NO pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.