We introduce natural generalizations of two well-known dynamical systems, the Sand Piles Model and the Brylawski's model. We describe their order structure, their reachable configuration's characterization, their fixed points and their maximal and minimal length's chains. Finally, we present an induced model generating the set of unimodal sequences which amongst other corollaries, implies that this set is equipped with a lattice structure.
International audienceIn this paper, we use a simple discrete dynamical model to study integer partitions and their lattice. The set of reachable configurations of the model, with the order induced by the transition rule defined on it, is the lattice of all partitions of a positive integer, equipped with a dominance ordering. We first explain how this lattice can be constructed by an algorithm in linear time with respect to its size by showing that it has a self-similar structure. Then, we define a natural extension of the model to infinity, which we compare with the Young lattice. Using a self-similar tree, we obtain an encoding of the obtained lattice which makes it possible to enumerate easily and efficiently all the partitions of a given integer. This approach also gives a recursive formula for the number of partitions of an integer, and some informations on special sets of partitions, such as length bounded partitions
International audienceThis paper presents a generalization of the sandpile model, called the parallel symmetric sandpile model, which inherits the rule of the symmetric sandpile model and implements them in parallel. We prove that although the parallel model produces fewer fixed points than the sequential model, the forms of fixed points of the two models are the same. Moreover, our proof is a constructive one, which gives a nearly shortest way to reach a given fixed point form
International audienceAn intense activity is nowadays devoted to the definition of models capturing the properties of complex networks. Among the most promising approaches, it has been proposed to model these graphs via their clique incidence bipartite graphs. However, this approach has, until now, severe limitations resulting from its incapacity to reproduce a key property of this object: the overlapping nature of cliques in complex networks. In order to get rid of these limitations we propose to encode the structure of clique overlaps in a network thanks to a process consisting in iteratively factorising the maximal bicliques between the upper level and the other levels of a multipartite graph. We show that the most natural definition of this factorising process leads to infinite series for some instances. Our main result is to design a restriction of this process that terminates for any arbitrary graph. Moreover, we show that the resulting multipartite graph has remarkable combinatorial properties and is closely related to another fundamental combinatorial object. Finally, we show that, in practice, this multipartite graph is computationally tractable and has a size that makes it suitable for complex network modelling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.