Interest in bringing p- and n-type monolayer semiconducting transition metal dichalcogenides (TMD) into contact to form rectifying pn diode has thrived since it is crucial to control the electrical properties in two-dimensional (2D) electronic and optoelectronic devices. Usually this involves vertically stacking different TMDs with pn heterojunction or, laterally manipulating carrier density by gate biasing. Here, by utilizing a locally reversed ferroelectric polarization, we laterally manipulate the carrier density and created a WSe2 pn homojunction on the supporting ferroelectric BiFeO3 substrate. This non-volatile WSe2 pn homojunction is demonstrated with optical and scanning probe methods and scanning photoelectron micro-spectroscopy. A homo-interface is a direct manifestation of our WSe2 pn diode, which can be quantitatively understood as a clear rectifying behavior. The non-volatile confinement of carriers and associated gate-free pn homojunction can be an addition to the 2D electron–photon toolbox and pave the way to develop laterally 2D electronics and photonics.
The elongation process under swift heavy ion irradiation (74 MeV Kr ions) of gold NPs, with a diameter in the range 10-30 nm, and embedded in a silica matrix has been investigated by combining experiment and simulation techniques: three-dimensional thermal spike (3DTS), molecular dynamics (MD) and a phenomenological simulation code specially developed for this study. 3DTS simulations evidence the formation of a track in the host matrix and the melting of the NP after the passage of the impinging ion. MD simulations demonstrate that melted NPs have enough time to expand after each ion impact. Our phenomenological simulation relies on the expansion of the melted NP, which flows in the track in silica, followed by its recrystallization upon cooling. Finally, the elongation of the spherical NP into a cylindrical one, with a length proportional to its initial size and a width close to the diameter of the track, is the result of the superposition of the independent effects of each expansion/recrystallization process occurring for each ion impact. In agreement with experiment, the simulation shows the gradual elongation of spherical NPs in the ion-beam direction until their widths saturate in the steady state and reach the value of the track diameter. Moreover, the simulations indicate that the expansion of the gold NP is incomplete at each ion impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.