The objective of this research is introduce a new machine learning ensemble approach that is a hybridization of Bagging ensemble (BE) and Logistic Model Trees (LMTree), named as BE-LMtree, for improving the performance of the landslide susceptibility model. The LMTree is a relatively new machine learning algorithm that was rarely explored for landslide study, whereas BE is an ensemble framework that has proven highly efficient for landslide modeling. Upper Reaches Area of Red River Basin (URRB) in Northwest region of Viet Nam was employed as a case study. For this work, a GIS database for the URRB area has been established, which contains a total of 255 landslide polygons and eight predisposing factors i.e., slope, aspect, elevation, land cover, soil type, lithology, distance to fault, and distance to river. The database was then used to construct and validate the proposed BE-LMTree model. Quality of the final BE-LMTree model was checked using confusion matrix and a set of statistical measures. The result showed that the performance of the proposed BE-LMTree model is high with the classification accuracy is 93.81% on the training dataset and the prediction capability is 83.4% on the on the validation dataset. When compared to the support vector machine model and the LMTree model, the proposed BE-LMTree model performs better; therefore, we concluded that the BE-LMTree could prove to be a new efficient tool that should be used for landslide modeling. This research could provide useful results for landslide modeling in landslide prone areas.3 of 22 BE and LMTree has resulted in a new powerful prediction method, and to the best of our knowledge, this is the first time that the BE-LMTree is studied for landslide susceptibility. Theoretical Background of the Methods Logistic Model TreeLogistic Model Trees (LMTree), which is a relatively new machine learning algorithm, is developed based on the integration of tree induction algorithm and additive logistic regression [52]. The difference of LMTree when compared to the other decision tree algorithms is that the tree growing process is carried out using the LogitBoost algorithm [52,55] and the tree pruning is performed using Classification And Regression Tree (CART) [56].Given a training dataset T = (x i , y i ) ds i=1 with x i ∈ R D is the input vector, ds is the number of data samples, D is the dimension of the training dataset, and y i ∈ (1, 0) is the label class. In this research context, the input vector consists of eight variables (slope, aspect, elevation, land cover, soil type, lithology, distance to fault, and distance to river), whereas the label class contains two classes, landslide (LS) and non-landslide (Non-LS). The landslide class is coded as "1" and the non-landslide is coded as "0". The objective of LMTree is to construct a tree-like structure model that is capable of classifying the training dataset into the two above classes in term of probability. The predicted numeric value to the landslide class of sample is used as susceptibility index.Structurally, ...
In this paper, a multi-scale object-based Fuzzy approach is demonstrated for Land use/Land cover (LULC) classification using high-resolution multi-spectral optical RapidEye and IKONOS images of Lao Cai and Can Tho areas in Vietnam respectively. Optimal threshold for segmentation procedure is selected from Rate of Change-Local Variance (ROC-LV) graph. Object-based fuzzy approach is implemented to identify LULC classes and LULC initial sets, and then the initial sets are classified to final LULC classes. In case of Lao Cai area, Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), water index (WI) in objectbased are used to generated water, terrace field classes, and built-up and vegetation sets. NDVI, soil index (SI) and red band are used to distinguish built-up set to building, bare land and road classes. NDVI and RedEgde band are inputs to classify rice field and forest classes from vegetation set. In case of Can Tho area, NDWI and WI are generated to water, vegetation, paddy field classes and built-up set, and then built-up set is classified to building, bare land, road, and paddy field classes. The technique is able to create LULC maps of Lao Cai and Can Tho areas with (90.8%, 0.84), and (92.3%, 0.90) classification accuracy and kappa coefficient, correspondingly.
Movie summarization and indexing is the study which takes into account the understanding of the audiences. Besides, movie summarization focuses on reducing the length of a movie. Regarding this work, we propose a character network analysis to index and summarize the given movie. The method is based on the discovery and analysis of characters with respect to their appearance and the relationships among them in the movie. The strategy analysis is used to detect scenes, to segment the sub-plots of the story, and to extract character network and the main storyline of the movie. As a result, the social strength of each character in the social network is measured using measurement techniques that will then be used to mine the main plotline of the movie. In the final stage, the main storyline is used to provide a summarized version of the movie based on the social power of the characters. Experiments were carried out with 17 series of the Star Wars, the Lord of the Rings and the Harry Potter. The experimental evaluation results show that this study should index and extract summarization versions while keeping the understanding of the audiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.