In this work, we investigate the propagation of magneto-inductive waves (MIWs) in ordering magnetic metamaterial (MM) structures. The proposed non-homogeneous MM slab consists of 9 × 9 MM unit cells constructed from a five-turn spiral embedded on an FR-4 substrate. External capacitors with the value of 40 pF or 50 pF were added to control the resonant frequency of each unit cell in accordance with the waveguide configurations. The characteristics of metamaterial structures, such as negative permeability, current ratio, transmission response, and field distribution in the waveguide, have been thoroughly analyzed by simulation and experiment. Because of the strong magnetic field confinement in the waveguide, the transmittance after nine elements of the non-homogeneous MM slab is 5.2 times greater than that of the homogeneous MM slab. This structure can be applied to the planar near-field wireless power transfer, position sensor, and low-frequency communication.
Recently, wireless power transfer (WPT) has been a topic of interest due to its attractive applications in modern life. Starting from Tesla’s idea about a century ago, WPT has developed tremendously and appeared in many of the most modern electronic devices. However, some WPT systems still have limitations such as short transmission distance, low transfer efficiency, and electromagnetic leakage. Magnetic metamaterial (MM) is a potential candidate that can overcome the above disadvantages of WPT. This paper is intended to present an overview of recent advances and research progress on WPT systems. Three classes of WPT consisting of short-range, mid-range, and long-range, will be analyzed in detail both in terms of fundamentals and applications. Especially, MM configurations can be used to enhance the near-field WPT efficiency and reduce the leakage of electromagnetic field will also be evaluated. This article is expected to provide a comprehensive review of the mechanism and applications as well as the future development of metamaterial-based WPT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.