The nucleotide second messenger c‐di‐GMP nearly ubiquitously promotes bacterial biofilm formation, with enzymes that synthesize and degrade c‐di‐GMP being controlled by diverse N‐terminal sensor domains. Here, we describe a novel class of widely occurring c‐di‐GMP phosphodiesterases (PDE) that feature a periplasmic “CSS domain” with two highly conserved cysteines that is flanked by two transmembrane regions (TM1 and TM2) and followed by a cytoplasmic EAL domain with PDE activity. Using PdeC, one of the five CSS domain PDEs of Escherichia coli K‐12, we show that DsbA/DsbB‐promoted disulfide bond formation in the CSS domain reduces PDE activity. By contrast, the free thiol form is enzymatically highly active, with the TM2 region promoting dimerization. Moreover, this form is processed by periplasmic proteases DegP and DegQ, yielding a highly active TM2 + EAL fragment that is slowly removed by further proteolysis. Similar redox control and proteolysis was also observed for a second CSS domain PDE, PdeB. At the physiological level, CSS domain PDEs modulate production and supracellular architecture of extracellular matrix polymers in the deeper layers of mature E. coli biofilms.
BACKGROUND Light‐emitting diodes (LEDs) are widely used in closed‐type plant production systems to improve biomass and accumulate bioactive compounds in plants. Perilla has been commonly used as herbal medicine because of its health‐promoting effects. This study aimed to investigate the physiological and biochemical responses of green and red perilla under various visible‐light spectra. RESULTS Results showed that red (R) LEDs improved fresh weights of shoots and roots, plant height, internode length, node number and leaf area, as well as photosynthetic rate of green and red perilla plants compared to blue (B) LEDs and RB combined LEDs. Meanwhile, B resulted in higher stomatal conductance, transpiration rate and Fv/Fm compared to R. Supplementation of green (G) and far‐red (FR) did not enhance perilla growth. Reduction or absence of B decreased leaf thickness, adaxial and abaxial epidermis, and palisade and spongy mesophyll. Total phenolic content, antioxidant capacity, rosmarinic acid content and caffeic acid content of green perilla were higher under R, R8B2 and RGB + FR, while greater values were obtained in red perilla under R. Accumulation of perillaldehyde, luteolin and apigenin presented different trends from those of rosmarinic and caffeic acids in both cultivars. CONCLUSIONS Growth and accumulation of bioactive compounds in green perilla were greater than in red perilla under similar light quality, and R LEDs or a higher R ratio in combination treatments were suitable for cultivating high‐quality green and red perilla plants in closed‐type plant factories. © 2020 Society of Chemical Industry
White (W) light-emitting diode (LED) light has been used as an efficient light source for commercial plant cultivation in vertical farming. This study aimed to examine the effect of W LED light sources on the growth and quality of butterhead and romaine lettuce. Three W LED light sources including normal W light (NWL) which has 450 nm as its pumping wavelength and two specific W lights (SWL1 and SWL2) with shorter blue peak wavelength (437 nm) were used to grow lettuce in comparison to a red (R) and blue (B) LED combination. As a result, SWL1 and SWL2 treatments with the same electrical power or photosynthetic photon flux density (PPFD) resulted in more growth of both lettuce cultivars compared to RB treatment. Some phenolic and flavonol contents were increased in the RB treatment, whereas SWL2 treatment stimulated the accumulation of other phenolic and flavonol compounds. Meanwhile, neither NWL nor SWL1 treatments increased the individual phenolic and flavonol contents in either cultivar (except for some flavonols in romaine lettuce in the SWL1 group). In addition, light and energy use efficiencies were also highest in the SWL1 and SWL2 treatments. These results illustrate the positive effects of specific W LED light on lettuce growth and quality, and suggest that the specific W LED light sources, especially SWL2, could be preferably used in vertical farming.
This study investigated growth and ginsenosides content of ginseng sprouts under various light spectra. One-year-old ginseng seedlings were cultivated under various light treatments including: monochromatic (red (R), green (G), and blue (B)), various RB and RGB combinations, white (fluorescent lamps (FL) and natural white (NW)), and supplemental far red (FR). R and high R ratio increased growth characteristics of ginseng sprouts (excepted for root dry weight). The replacement of G for B in RGB group and W group did not increase the growth, and supplemental FR increased shoot and root fresh weights, total fresh weight, and leaf area. R had 1.5 times higher photosynthetic rate compared to B and G, and R8G1B1 and R9G1B0 showed the highest values in RGB group; whereas the RB, W, and FR groups did not enhance photosynthetic rate. B and high B ratio increased shoot saponin and ginsenosides, total saponin and ginsenosides contents. Total saponin content in shoot was 4.4 times higher than that in root. The supplemental FR enhanced both total saponin and ginsenosides contents. In conclusion, NW + FR showed the highest total fresh weight, saponin and ginsenosides contents among all treatments, suggesting that supplementation of FR has a positive effect on ginseng sprouts grown in plant factories.
We evaluated the effect of a newly-developed nutrient solution of red perilla (NSP) with various electrical conductivity (EC) levels on plant growth, mineral content, and bioactive compounds. Four-week-old seedlings were grown in greenhouse nutrient solution as control (CT) (EC 1–3 dS m−1) or NSP (EC 1–6 dS m−1). NSP 1 dS m−1 induced better growth characteristics, whereas higher EC levels inhibited plant growth. Most of the macro-elements contents significantly decreased under NSP 6 dS m−1, whereas the micro-elements contents fluctuated according to EC levels. Total phenolic concentration in NSP was lower than that in CT, and total phenolic content was highest under NSP 1 dS m−1. Total anthocyanin and antioxidant concentrations and contents increased at lower EC levels. Rosmarinic and caffeic acids concentrations increased at higher EC levels, whereas there were no significant differences in these compound contents among the EC levels. No difference in perillaldehyde concentration was observed, whereas the content was higher at lower EC levels. Overall, these results suggest that NSP 1 dS m−1 is suitable for cultivating red perilla in plant factories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.