Co-doped Fe-MOF bimetallic organic framework materials at different ratios were synthesized based on the solvothermal method, and we evaluated their morphological characteristics by modern analytical methods such as SEM, XRD, FT-IR, and isotherm of nitrogen adsorption-desorption (BET). The specific surface area of the 0.3 CoFe-MOF sample (280.9 m2/g) is much larger than the Fe-MOF and samples at other ratios. The post-synthesized materials were evaluated for their ability to absorb various dyes, including Methylene Blue (MB), Methyl orange (MO), Congo red (CR), and Rhodamine (RhB), and evaluated for the effects of pH, the initial concentration of the dye solution, time, and dose of adsorbent. The results show that the 0.3 CoFe-MOF material has a high adsorption capacity that is superior to both the original Fe-MOF and the CoFe-MOFs at other ratios. The highest adsorption capacity of MB dye by 0.3 CoFe-MOF reaches up to 562.1 mg/g at pH 10, the initial concentration of MB of 200 mg/L, after 90 min. The charged properties of the dyes and the charged nature of the bimetallic organic frameworks are best demonstrated through the adsorption of dye mixtures. The adsorption efficiency on the mixed system of cationic (MB) and anionic (MO) dyes yielded the highest removal efficiency of 70% and 81%, respectively, after 30 min. Therefore, the research has opened up the potential application of M/Fe-MOF modified materials and CoFe-MOF in organic dyes adsorption in wastewater treatment for environmental protection.
For the first time, activated carbon from a durian shell (ACDS) activated by H2SO4 was successfully synthesized in the present study. The fabricated ACDS has a porous surface with a specific surface area of 348.0017 m2·g−1, average capillary volume of 0.153518 cm3·g−1, the average pore diameter of 4.3800 nm; ash level of 55.63%; humidity of 4.74%; density of 0.83 g·cm−3; an iodine index of 634 mg·g−1; and an isoelectric point of 6.03. Several factors affecting Methylene Blue (MB) adsorption capacity of ACDS activated carbon was investigated by the static adsorption method, revealing that the adsorption equilibrium was achieved after 90 min. The best adsorbent pH for MB is 7 and the mass/volume ratio is equal to 2.5 g·L−1. The MB adsorption process of ACDS activated carbon follows the Langmuir, Freundlich, Tempkin, and Elovich isotherm adsorption model, which has determined the maximum adsorption capacity for MB of ACDS as qmax = 57.47 mg·g−1. The MB adsorption process of ACDS follows the of pseudo-second-order adsorption kinetic equation. The Weber and Morris Internal Diffusion Model, the Hameed and Daud External Diffusion Model of liquids have been studied to see if the surface phase plays any role in the adsorption process. The results of thermodynamic calculation of the adsorption process show that the adsorption process is dominated by chemical adsorption and endothermic. The obtained results provide an insight for potential applications of ACDS in the treatment of water contaminated by dyes.
The co-precipitation method was employed to synthesize a set of ZnAl hydrotalcite materials modified by Cu2+. The synthesized materials have a similar lamellar structure to that of hydrotalcite. The distance between layers is in the range of 7.73–8.56 Å. The network parameters a and c ranged from 3.058 to 3.074 Å and from 23.01 to 24.44, respectively. According to the IUPAC classification, the composites possess a mesoporous structure which belongs to class IV, type H 3. Particularly, the absorption edge shifts strongly to the visible light region when increasing the molar ratio of Cu2+ in the samples from 0 to 3.5. The photocatalytic activity of the synthetic materials was evaluated through the degradation efficiency of rhodamine-B (Rh-B) in the water and colorants in textile wastewater. The present study was the first to synthesize a material sample that contains a molar ratio of Cu2+ in the range of 2.5–3.5 and has high catalytic activities. They were able to degrade Rh-B at a high concentration (100 ppm) with a conversion rate of approximately 90% after 240 min of irradiation using a 30 W LED light. The catalytic activity of the composites depends on the molar ratio of modified Cu2+, the value of environmental pH, the H2O2 concentration and the irradiation time.
TiO2-based photocatalysts still have some limitations such as large bandgap and low surface area, leading to low efficiency in the photocatalytic degradation of VOCs and limiting it to use in sunlight. Here we report that the nanostructured Ir-doped TiO2 as an efficient photocatalyst generates an excellent risk-reduction material of gaseous toluene. We have succeeded in developing a nanostructured Ir-doped TiO2 and initially found that excellent efficient photocatalytic VOC decomposition can be achieved in our materials The nanostructured Ir-doped TiO2 was synthesized by a one pot, low temperature hydrothermal process with different ratios of Ir doped into the TiO2. It exhibited a high surface area, uniformly spherical morphology of 10–15 nm. Its activity for the photocatalytic degradation of gaseous toluene exhibited up to 97.5% under UV light. This enhancement could be explained by iridium doping which created a high concentration oxygen vacancy and changed the recombination rate of the photogenerated charge carriers. More generally, our study indicates a strategic way to develop the novel nanostructured material for numerous applications.
In this study, we report on the preparation of copper oxide/strontium titanate/multi-walled carbon nanotube (CuO/STO/MWCNTs) nanocomposites and their photocatalytic activity for degradation of dye under visible light. The crystalline structures of the nanocomposites were investigated by an X-ray diffraction (XRD) technique, which explored the successful fabrication of CuO/STO/MWCNTs nanocomposites, and the cubic STO phase was formed in all samples. For the morphological study, the transmission electron microscope (TEM) technique was used, which had proved the successful preparation of CuO and STO nanoparticles. The energy dispersive X-ray spectroscopy (EDX), dark field scanning transmission electron microscope (DF-STEM-EDX mapping), and X-ray photoelectron spectra (XPS) analysis were performed to evidence the elemental composition of CuO/STO/MWCNTs nanocomposites. The optical characteristics were explored via UV–Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) techniques. These studies clearly indicate the effect of the presence of CuO and MWCNTs on the visible absorption of the CuO/STO/MWCNTs nanocomposites. The photocatalytic activity of CuO/STO/MWCNTs nanocomposites was evaluated by the degradation of methylene blue (MB) dye under visible light irradiation, following first-order kinetics. Among the different x% CuO/STO/MWCNTs nanocomposites, the 5 wt.% CuO/STO/MWCNTs nanocomposites showed the highest photocatalytic efficiency for the degradation of MB dye. Moreover, the 5% CuO/STO/MWCNTs showed good stability and recyclability after three consecutive photocatalytic cycles. These results verified that the optimized nanocomposites can be used for photocatalytic applications, especially for dye degradation under visible light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.