A series of Pd/HZSM-5 catalysts modified by various metallic species, including Co, Ni, Fe, Re, and Cu, was prepared by sequential impregnation. Contents of Pd and second metals in modified catalysts were 0.8 and 1.0 wt%, respectively. Physico-chemical characteristics of catalysts were investigated by nitrogen physi-sorption (BET), x-ray diffraction (XRD), transmission electron microscopy (TEM), ammonia temperature programmed desorption (NH 3 -TPD), temperature programmed reduction (TPR) and hydrogen pulse chemisorption (HPC). Coke formation was studied by the method of thermogravimetric analysis (TGA). The activities of catalysts in n-hexane isomerization were studied in a micro-flow reactor under atmospheric pressure at 250 °C, and molar ratio of H 2 : n-hexane of 5.92. It was found that Co, Ni, Fe, and Re additives exhibited geometric and electronic effects toward Pd/HZSM-5 catalyst, leading to an enhancement of its activity and stability. On the contrary, Cu additive caused Pd/HZSM-5 to become poorer in activity and stability.
In this work zeolites HY, HZSM-5 and mixes of zeolites with γ-Al2O3 in different ratios were taken as carriers for 0.8 wt% Pd catalysts. Physico-chemical characteristics of the catalysts were determined by methods of Brunauer–Emmett–Teller (BET)–N2 adsorption, x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), hydrogen pulse chemisorption (HPC) and NH3 adsorption–desorption. The activity of catalysts was studied at 225–450 °C, at 0.1 and 0.7 MPa with molar ratio of H2:n-C6H14 = 5.92 and n-hexane concentration 9.2 mol%. Mixing of γ-Al2O3 with zeolite made acidity of catalyst weaken and led to a decrease of Pd cluster size, to an increase of Pd dispersity and a reduction of the extent of Pd in the case of catalyst Pd/HY; but for the catalyst Pd/HZSM-5 such mixing led to the reverse effect. That is why the increase of activity in the first case and the decrease of activity in the second case have been observed. It has been found that the optimal ratio of mixed carrier is γ-Al2O3:HY = 2.5:1 and the optimal calcined temperature of NH4ZSM-5 to obtain HZSM-5 is 500–550 °C. An increase of reaction pressure from 0.1 to 0.7 MPa remarkably increased the activity, selectivity and stability of Pd-based catalysts.
This paper studied the effects of feed properties in spray drying formulation of prototype industrial cracking catalysts at the laboratory scale. The results showed that the pH of the drying feed mainly affected the active phase HY zeolite. At a high pH value, a strongly alkaline medium (pH 14), the HY zeolite structure was completely destroyed, resulting in the cracking catalyst with a low surface area. Hence, the pH of the drying feed should be adjusted to a low value, preferably a slightly acidic medium (pH 3). The solid content mainly affected the particle size of the cracking catalyst. As increasing the solid content in the drying feed, the particle size of the cracking catalysts increased and reached the maximum average value at about 40 μm which corresponded to the solid content of 15 wt.%. At a higher solid content (20 wt.%), the catalyst particle size and surface area tended to decrease. Thus, the solid content of 15 wt.% was considered to be optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.