We present the experimental studies of highly strained soft bidisperse granular systems made of hyperelastic and plastic particles. We explore the behavior of granular matter deep in the jammed state from local field measurement, from the grain scale to the global scale. By mean of a dedicated digital image correlation code and an accurate image recording method, we measure for each compression step the evolution of the particle geometries and their right Cauchy-Green strain tensor fields. We analyze the evolution of the usual macroscopic observables (stress, packing fraction, coordination, fraction of non-rattlers, etc.) along the compression process through the jamming point and far beyond. Analyzing the evolution of the local strain statistics, we evidence a crossover in the material behavior deep in the jammed state for both sorts of particles. We show that this crossover is due to a competition between material compression, dilation and shear, so its position depends on the particle material. We argue that the strain field is a reliable observable to describe the evolution of a granular system through the jamming transition and deep in the dense packing state whatever is the material behavior. arXiv:1903.09979v2 [cond-mat.soft]
Using the contact dymanics method together with the finite element method, we simulate the uniaxial compression of assemblies of elastic cylinders. The numerical model accounts for finite deformations of the particles through the neo-Hookean constitutive equation and solid friction between the particles. A quantitative comparison with experiments carried out with centimetric rubberlike cylinders, with local deformations of the particles determined by image correlation, is proposed. We show that the simulations accurately capture the details of both the microstructure and the macroscopic behavior of the real granular system, demonstrating the relevancy of the numerical approach.
Deformation fields at the surface of diametrically squeezed shallow cylinders in the large deformation regime are measured experimentally and numerically for different material behaviour in the large deformation regime. By means of a digital image correlation method optimized for large displacements, strain fields are measured and compared with finite element simulations. Assuming a neo-Hookean behaviour for cylinders made of rubber silicone, the strain field is found to be in quantitative agreement with non-linear finite element simulations up to the highest deformations reached in our experiments (15%). For materials that follow an elastoplastic constitutive law, agreement is lost after few percents of deformation and location of the strain field differences are identified up to strains as high as 30%. Strain field evolution is also measured for solid foam cylinders up to 60% of global deformation strain. This method that can be applied to a broad variety of materials, even in the occurrence of large deformations, provides a way to study quantitatively local features of the mechanical contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.