The increasingly growing data traffic has posed great challenges for mobile operators to increase their data processing capacity, which incurs a significant energy consumption and deployment cost. With the emergence of the Cloud Radio Access Network (C-RAN) architecture, the data processing units can now be centralized in data centers and shared among base stations. By mapping a cluster of base stations with complementary traffic patterns to a data processing unit, the processing unit can be fully utilized in different periods of time, and the required capacity to be deployed is expected to be smaller than the sum of capacities of single base stations. However, since the traffic patterns of base stations are highly dynamic in different time and locations, it is challenging to foresee and characterize the traffic patterns in advance to make optimal clustering schemes. In this paper, we address these issues by proposing a deep-learning-based C-RAN optimization framework. First, we exploit a Multivariate Long Short-Term Memory (MuLSTM) model to learn the temporal dependency and spatial correlation among base station traffic patterns, and make accurate traffic forecast for a future period of time. Afterwards, we build a weighted graph to model the complementarity of base stations according to their traffic patterns, and propose a Distance-Constrained Complementarity-Aware (DCCA) algorithm to find optimal base station clustering schemes with the objectives of optimizing capacity utility and deployment cost. We evaluate the performance of our framework using data in two months from real-world mobile networks in Milan and Trentino, Italy. Results show that our method effectively increases the average capacity utility to 83.4% and 76.7%, and reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN architecture in the two datasets, respectively, which consistently outperforms the state-of-the-art baseline methods.
Bike sharing is booming globally as a green transportation mode, but the occurrence of over-demand stations that have no bikes or docks available greatly affects user experiences. Directly predicting individual over-demand stations to carry out preventive measures is difficult, since the bike usage pattern of a station is highly dynamic and context dependent. In addition, the fact that bike usage pattern is affected not only by common contextual factors (e.g., time and weather) but also by opportunistic contextual factors (e.g., social and traffic events) poses a great challenge. To address these issues, we propose a dynamic cluster-based framework for over-demand prediction. Depending on the context, we construct a weighted correlation network to model the relationship among bike stations, and dynamically group neighboring stations with similar bike usage patterns into clusters. We then adopt Monte Carlo simulation to predict the over-demand probability of each cluster. Evaluation results using real-world data from New York City and Washington, D.C. show that our framework accurately predicts over-demand clusters and outperforms the baseline methods significantly.
Abstract-Software-Defined Networking (SDN) controllers are considered as Network Operating Systems (NOSs) and often viewed as a single point of failure. Detecting which SDN controller is managing a target network is a big step for an attacker to launch specific/effective attacks against it. In this paper, we demonstrate the feasibility of fingerpirinting SDN controllers. We propose techniques allowing an attacker placed in the data plane, which is supposed to be physically separate from the control plane, to detect which controller is managing the network. To the best of our knowledge, this is the first work on fingerprinting SDN controllers, with as primary goal to emphasize the necessity to highly secure the controller. We focus on OpenFlow-based SDN networks since OpenFlow is currently the most deployed SDN technology by hardware and software vendors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.