Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring.
To realize the potential applications of stretchable sensors in the field of wearable health monitoring, it is essential to develop a stable sensing device with robust electrical and mechanical properties in the present of varying external conditions. Herein, we demonstrate a stretchable temperature sensor with the elimination of strain-induced interference via geometric engineering of the free-standing stretchable fibers (FSSFs) of reduced graphene oxide/ polyurethane composite. The FSSFs were formed in serpentine structures and enabled the implementation of a strain-insensitive stretchable temperature sensor. On the basis of the controlled reduction time of graphene oxide, we can modulate the response and thermal index of the device. These results are attributed to the variation in the density of oxygen-containing functional groups in the FSSFs, which affect the hopping charge transport and thermal generation of excess carriers. The FSSF temperature sensor yields increased responsivity (0.8%/°C), stretchability (90%), sensing resolution (0.1 °C), and stability in response to applied stretching (±0.37 °C for strains ranging from 0 to 50%). When the sensor is sewn onto a stretchable bandage and attached to the human body, it can detect the temperature changes of the human skin during different body motions in a continuous and stable manner.
A conformal patch biosensor that
can detect biomolecules is one
promising technology for wearable sweat glucose self-monitoring. However,
developing such a patch is challenging because conferring stretchability
to its components is difficult. Herein, we demonstrate a platform
for a nonenzymatic, electrochemical sensor patch: a wrinkled, stretchable,
nanohybrid fiber (WSNF) in which Au nanowrinkles partially cover the
reduced graphene oxide (rGO)/polyurethane composite fiber. The WSNF
has high electrocatalytic activity because of synergetic effects between
the Au nanowrinkles and the oxygen-containing functional groups on
the rGO-supporting matrix which promote the dehydrogenation step in
glucose oxidation. The WSNF offers stretchability, high sensitivity,
low detection limit, high selectivity against interferents, and high
ambient-condition stability, and it can detect glucose in neutral
conditions. If this WSNF sensor patch were sewn onto a stretchable
fabric and attached to the human body, it could continuously measure
glucose levels in sweat to accurately reflect blood glucose levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.