The class A adenosine A receptor (AR) is a G-protein-coupled receptor that preferentially couples to inhibitory G heterotrimeric G proteins, has been implicated in numerous diseases, yet remains poorly targeted. Here we report the 3.6 Å structure of the human AR in complex with adenosine and heterotrimeric G protein determined by Volta phase plate cryo-electron microscopy. Compared to inactive AR, there is contraction at the extracellular surface in the orthosteric binding site mediated via movement of transmembrane domains 1 and 2. At the intracellular surface, the G protein engages the AR primarily via amino acids in the C terminus of the Gα α5-helix, concomitant with a 10.5 Å outward movement of the AR transmembrane domain 6. Comparison with the agonist-bound β adrenergic receptor-G-protein complex reveals distinct orientations for each G-protein subtype upon engagement with its receptor. This active AR structure provides molecular insights into receptor and G-protein selectivity.
The adenosine A receptor (A-AR) is a G-protein-coupled receptor that plays a vital role in cardiac, renal, and neuronal processes but remains poorly targeted by current drugs. We determined a 3.2 Å crystal structure of the A-AR bound to the selective covalent antagonist, DU172, and identified striking differences to the previously solved adenosine A receptor (A-AR) structure. Mutational and computational analysis of A-AR revealed a distinct conformation of the second extracellular loop and a wider extracellular cavity with a secondary binding pocket that can accommodate orthosteric and allosteric ligands. We propose that conformational differences in these regions, rather than amino-acid divergence, underlie drug selectivity between these adenosine receptor subtypes. Our findings provide a molecular basis for AR subtype selectivity with implications for understanding the mechanisms governing allosteric modulation of these receptors, allowing the design of more selective agents for the treatment of ischemia-reperfusion injury, renal pathologies, and neuropathic pain.
Drug-resistant tuberculosis is a global health problem that hinders the progress of tuberculosis eradication programs. Accurate and early detection of drug-resistant tuberculosis is essential for effective patient care, for preventing tuberculosis spread, and for limiting the development of drug-resistant strains. Culture-based drug susceptibility tests are the gold standard method for the detection of drug-resistant tuberculosis, but they are time-consuming and technically challenging, especially in low- and middle-income countries. Nowadays, different nucleic acid-based assays that detect gene mutations associated with resistance to drugs used to treat tuberculosis are available. These tests vary in type and number of targets and in sensitivity and specificity. In this review, we will describe the available molecular tests for drug-resistant tuberculosis detection and discuss their advantages and limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.