Chitosanases and proteases have received much attention due to their wide range of applications. Four kinds of chitinous materials, squid pens, shrimp heads, demineralized shrimp shells and demineralized crab shells, were used as the sole carbon and nitrogen (C/N) source to produce chitosanases, proteases and α-glucosidase inhibitors (αGI) by four different strains of Paenibacillus. Chitosanase productivity was highest in the culture supernatants using squid pens as the sole C/N source. The maximum chitosanase activity of fermented squid pens (0.759 U/mL) was compared to that of fermented shrimp heads (0.397 U/mL), demineralized shrimp shells (0.201 U/mL) and demineralized crab shells (0.216 U/mL). A squid pen concentration of 0.5% was suitable for chitosanase, protease and αGI production via Paenibacillus sp. TKU042. Multi-purification, including ethanol precipitation and column chromatography of Macro-Prep High S as well as Macro-Prep DEAE (diethylaminoethyl), led to the isolation of Paenibacillus sp. TKU042 chitosanase and protease with molecular weights of 70 and 35 kDa, respectively. For comparison, 16 chitinolytic bacteria, including strains of Paenibacillus, were investigated for the production of chitinase, exochitinase, chitosanase, protease and αGI using two kinds of chitinous sources.
Chitosanase has attracted great attention due to its potential applications in medicine, agriculture, and nutraceuticals. In this study, P. mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil, exhibited the highest chitosanase activity (0.53 U/mL) on medium containing shrimp heads as the sole carbon and nitrogen (C/N) source. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a chitosanase isolated from P. mucilaginosus TKU032 cultured on shrimp head medium was determined at approximately 59 kDa. The characterized chitosanase showed interesting properties with optimal temperature and thermal stability up to 70 °C. Three chitosan oligosaccharide (COS) fractions were isolated from hydrolyzed colloidal chitosan that was catalyzed by TKU032 chitosanase. Of these, fraction I showed the highest α-glucosidase inhibitor (aGI) activity (65.86% at 20 mg/mL); its inhibitory mechanism followed the mixed noncompetitive inhibition model. Fractions II and III exhibited strong 2,2-diphenyl1-picrylhydrazyl (DPPH) radical scavenging activity (79.00% at 12 mg/mL and 73.29% at 16 mg/mL, respectively). In summary, the COS fractions obtained by hydrolyzing colloidal chitosan with TKU032 chitosanase may have potential use in medical or nutraceutical fields due to their aGI and antioxidant activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.