A highly potent secondary metabolite producing endophytic strain, Streptomyces sp. HUST012 was isolated from the stems of the medicinal plant Dracaena cochinchinensis Lour. Strain HUST012 showed antimicrobial and antitumor activities which were significantly much higher than those of dragon's blood extracted from D. cochinchinensis Lour. On further analysis, the strain was found to produce two metabolites, SPE-B11.8 (elucidated to be a novel metabolite (Z)-tridec-7-ene-1,2,13-tricarboxylic acid) and SPE-B5.4 (elucidated as Actinomycin-D). The Minimum Inhibitory Concentration values of SPE-B11.8 against a set of test bacterial organisms (Methicillin-resistant Staphylococcus epidermis ATCC 35984, Methicillin-resistant Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 13883) ranged between 15.63 and 62.5 μg/ml while that for SPE-B5.4 ranged between 0.04 and 2.24 μg/ml. The compound SPE-B11.8 showed cytotoxic effect at 41.63 and 29.54 μg/ml IC50-values against Hep G2 and MCF-7, respectively, while the compound SPE-B5.4 exhibited stronger activities against them at 0.23 and 0.18 μg/ml IC50-values.
Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces, Nocardiopsis, Brevibacterium, Microbacterium, Tsukamurella, Arthrobacter, Brachybacterium, Nocardia, Rhodococcus, Kocuria, Nocardioides, and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC50-values ranging between 3 and 33 μg·mL−1. Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.
A novel, Gram-stain-negative, non-motile, rod-shaped yellow bacterium, designated VBW088 T was isolated from a shallow water hydrothermal vent in Espalamaca in the Azores. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain VBW088 T clustered with three type strains of species of the genus Vitellibacter and exhibited a sequence similarity of 97.3 % with Vitellibacter soesokkakensis RSSK-12 T . However, strain VBW088 T and V. soesokkakensis RSSK-12 T exhibited low DNA-DNA relatedness (12.7±3.5 %). Strain VBW088 T was positive for catalase and oxidase. Growth occurred at 10-37 6C, with the optimum at 30 6C, and at pH 6.0-8.0 (optimum pH 6.0) and in up to 5 % (w/v) NaCl with optimum growth at 1-2 % (w/v) NaCl. The major fatty acids (.10 %) were iso-C 15 : 0 (33.5 %) and iso-C 17 : 0 3-OH (32.0 %). The polar lipids detected in strain VBW088 T consisted of phosphatidylethanolamine, one unidentified aminolipid and three unidentified phospholipids. The DNA G+C content of strain VBW088 T was 36.7 mol%. On the basis of phylogenetic inference, DNA-DNA relatedness, chemotaxonomic analysis and physiological data, the isolate represents a novel species of the genus Vitellibacter, for which the name Vitellibacter nionensis sp. nov. is proposed, with the type strain as VBW088 T (5KCTC 32420 T 5MCC 2354 T ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.