Identifying polyps is challenging for automatic analysis of endoscopic images in computeraided clinical support systems. Models based on convolutional networks (CNN), transformers, and their combinations have been proposed to segment polyps with promising results. However, those approaches have limitations either in modeling the local appearance of the polyps only or lack of multi-level feature representation for spatial dependency in the decoding process. This paper proposes a novel network, namely ColonFormer, to address these limitations. ColonFormer is an encoder-decoder architecture capable of modeling long-range semantic information at both encoder and decoder branches. The encoder is a lightweight architecture based on transformers for modeling global semantic relations at multi scales. The decoder is a hierarchical network structure designed for learning multi-level features to enrich feature representation. Besides, a refinement module is added with a new skip connection technique to refine the boundary of polyp objects in the global map for accurate segmentation. Extensive experiments have been conducted on five popular benchmark datasets for polyp segmentation, including Kvasir, CVC-Clinic DB, CVC-ColonDB, CVC-T, and ETIS-Larib. Experimental results show that our ColonFormer outperforms other state-of-the-art methods on all benchmark datasets.
In this paper we present an adaptive method for graphic symbol representation based on shape contexts. The proposed descriptor is invariant under classical geometric transforms (rotation, scale) and based on interest points. To reduce the complexity of matching a symbol to a large set of candidates we use the popular vector model for information retrieval. In this way, on the set of shape descriptors we build a visual vocabulary where each symbol is retrieved on visual words. Experimental results on complex and occluded symbols show that the approach is very promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.