Two new glycosylated alkylresorcinols, resorcinosides A (1) and B (2), were isolated from a strain of the fungus Penicillium janthinellum derived from a marine sediment sample collected from Cu Lao Cham Island, Vietnam. The structures of 1 and 2 were established by interpretation of 1D and 2D NMR and high-resolution ESIMS data, and their absolute configurations were confirmed by the coupling constant of the anomeric proton, acid hydrolysis, subsequent HPLC analysis, Mosher’s method, and quantum-mechanics-based computational analysis of NMR chemical shifts. The structure elucidation indicated that 1 and 2 are new alkylresorcinols with d-glucose, and 2 has an α-pyrone moiety attached to the aromatic ring. Compound 1 exhibited cytotoxic activity against the NUGC-3 cancer cell line with a GI50 value of 9.3 μM.
Glass biodeterioration by fungi has caused irreversible damage to valuable glass materials such as cultural heritages and optical devices. To date, knowledge about metabolic potential and genomic profile of biodeteriorative fungi is still scarce. Here, we report for the first time the whole genome sequence of Curvularia eragrostidis C52 that strongly degraded silica-based glasses coated with fluorine and hafnium, as expressed by the hyphal surface coverage of 46.16 ± 3.3% and reduced light transmission of 50.93 ± 1.45%. The genome of C. eragrostidis C52 is 36.9 Mb long with a GC content of 52.1% and contains 14,913 protein-coding genes, which is the largest genome ever recorded in the genus Curvularia. Phylogenomic analysis revealed C. eragrostidis C52 formed a distinct cluster with Curvularia sp. IFB-Z10 and was not evolved from compared genomes. Genome-wide comparison showed that strain C52 harbored significantly higher proportion of proteins involved in carbohydrate-active enzymes, peptidases, secreted proteins, and transcriptional factors, which may be potentially attributed to a lifestyle adaptation. Furthermore, 72 genes involved in the biosynthesis of 6 different organic acids were identified and expected to be crucial for the fungal survival in the glass environment. To form biofilm against stress, the fungal strain utilized 32 genes responsible for exopolysaccharide production. These findings will foster a better understanding of the biology of C. eragrostidis and the mechanisms behind fungal biodeterioration in the future.
The adsorption of Co(II) from the simulated solution was investigated using zeolite NaX derived from rice husk ash as an alternative adsorbent. The adsorption behavior of Co(II) depended strongly on the equilibrium pH, Co (II) concentration, zeolite NaX dosage, and reaction time. The high adsorption efficiency of Co(II) by zeolite NaX was obtained under the conditions: pH 3.0, 100 mg/L of Co(II), 5 g/L of zeolite NaX, and a reaction time of 75 min. The loading behavior of Co(II) onto the zeolite NaX was well-fitted to the Freundlich adsorption isotherm and the Co(II) loading capacity by zeolite NaX was around 38 mg/g. The obtained results indicate that synthesized zeolite NaX from rice husk ash is a potential adsorbent to remove cobalt from waste solutions due to its high adsorption.
Volatile components are abundant in carbonaceous asteroids and can be important tracers for the evolution of asteroid surfaces interacting with the space environment, but their behavior on airless surfaces is poorly understood. Samples from the C-type carbonaceous asteroid Ryugu show dehydration of phyllosilicate, indicating ongoing surface modifications on the aqueously-altered asteroid. Here we report the analysis of Ryugu samples showing selective liberation of carbon, oxygen, and sulfur from iron-rich oxide, sulfide, and carbonate, which are major products of aqueous alteration. These mineral surfaces are decomposed to metallic iron, iron nitride, and magnesium-iron oxide. The modifications are most likely caused by solar wind implantation and micrometeorite impacts and are distinct indicators of surface space exposure over 103 years. Nitridation of metallic iron may require micrometeorites rich in solid nitrogen compounds, which implies that the amount of nitrogen available for planetary formation in the inner solar system is larger than previously recognized.
Herein, carbon-coated magnetic nanocomposite fabricated by a lowtemperature hydrothermal method was used for methylene blue and arsenate treatment in aqueous solution. The Langmuir model fits the experimental data with a calculated maximum adsorption capacity of 110.63 and 2.31 mg g-1 for methylene blue and arsenate adsorption, respectively. Furthermore, the adsorption mechanisms of methylene blue as well as arsenate are physical adsorption and a combination of physical adsorption and chemisorption, respectively. Gibbs free energy change with negative values indicates that methylene blue and arsenate adsorption on magnetic materials occurs naturally. This research demonstrated a simple, efficient, and reliable method for removing methylene blue and arsenate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.