Purpose
– Class-based storage has been studied extensively and proved to be an efficient storage policy. However, few literature addressed how to cluster stuck items for class-based storage. The purpose of this paper is to develop a constrained clustering method integrated with principal component analysis (PCA) to meet the need of clustering stored items with the consideration of practical storage constraints.
Design/methodology/approach
– In order to consider item characteristic and the associated storage restrictions, the must-link and cannot-link constraints were constructed to meet the storage requirement. The cube-per-order index (COI) which has been used for location assignment in class-based warehouse was analyzed by PCA. The proposed constrained clustering method utilizes the principal component loadings as item sub-group features to identify COI distribution of item sub-groups. The clustering results are then used for allocating storage by using the heuristic assignment model based on COI.
Findings
– The clustering result showed that the proposed method was able to provide better compactness among item clusters. The simulated result also shows the new location assignment by the proposed method was able to improve the retrieval efficiency by 33 percent.
Practical implications
– While number of items in warehouse is tremendously large, the human intervention on revealing storage constraints is going to be impossible. The developed method can be easily fit in to solve the problem no matter what the size of the data is.
Originality/value
– The case study demonstrated an example of practical location assignment problem with constraints. This paper also sheds a light on developing a data clustering method which can be directly applied on solving the practical data analysis issues.
Categorical data clustering has been attracted a lot of attention recently due to its necessary in the real-world applications. Many clustering methods have been proposed for categorical data. However, most of the existing algorithms require the predefined number of clusters which is usually unavailable in real-world problems. Only a few works focused on automatic clustering, but mainly handled for numerical data. This study develops a novel automatic fuzzy clustering using non-dominated sorting particle swarm optimization (AFC-NSPSO) algorithm for categorical data. The proposed AFC-NSPSO algorithm can automatically identify the optimal number of clusters and exploit the clustering result with the corresponding selected number of clusters. In addition, a new technique is investigated to identify the maximum number of clusters in a dataset based on the local density. To select a final solution in the first Pareto front, some internal validation indices are used. The performance of the proposed AFC-NSPSO on the real-world datasets collected from the UCI machine learning repository exhibits effectiveness compared with some other existing automatic categorical clustering algorithms. Besides, this study also applies the proposed algorithm to analyze a real-world case study with an unknown number of clusters.INDEX TERMS Automatic clustering, categorical data, local density, NSPSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.