Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were coaxially and continuously extruded without ultraviolet illumination using a microfluidic-based nozzle. Type I collagen (3 mg ml−1) containing HUVECs and a crosslinking reagent (100 mM CaCl2) were supplied as the core material. A mixture of 3 mg ml−1 of type I collagen (25%) and 1.8% weight volume−1 of sodium alginate (75%) was provided as the shell layer material surrounding the core material. The HUVECs were well proliferated at the core and reshaped into a monolayer formation along the axial direction of the scaffold. The HASMCs showed more than 90% cell viability in the shell layer. Fluorescent beads were passed through the inside channel of the scaffold with the HUVEC core and HASMC shell using an in-house connector. This double-layered scaffold showed higher angiogenesis in growth factor-free medium than the scaffold with only a HUVEC core. The HASMCs in the shell layer affected angiogenesis, extracellular matrix secretion, and outer diameter. The proposed technique could be applied to three-dimensional bioprinting for the production of high-volume vascularised tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.