Our results demonstrated that this automatic diagnosis algorithm has acceptable accuracy to diagnose pediatric OM. The cost-effective algorithm can assist parents for early detection and continuous monitoring at home to decrease consequence of the disease.
This paper proposes a novel active contour model for image segmentation based on techniques of curve evolution. The paper introduces an energy functional including a local fuzzy energy and a global fuzzy energy to attract the active contour and stop it on the object boundaries. The local term allows the method to deal with intensity inhomogeneity in images. The global term, aside from driving the contour toward the desired objects, is used to avoid unsatisfying results led by unsuitable initial contour position, a common limitation of models using local information solely. In addition, instead of solving the EulerLagrange equation, the paper directly calculates the alterations of the fuzzy energy. By this way, the contour converges quickly to the object boundary. Experimental results on both 2D and 3D images validate the effectiveness of the model when working with intensity inhomogeneous images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.