The membrane glycoprotein CD36 binds nanomolar concentrations of long chain fatty acids (LCFA) and is highly expressed on the luminal surface of enterocytes. CD36 deficiency reduces chylomicron production through unknown mechanisms. In this report, we provide novel insights into some of the underlying mechanisms. Our in vivo data demonstrate that CD36 gene deletion in mice does not affect LCFA uptake and subsequent esterification into triglycerides by the intestinal mucosa exposed to the micellar LCFA concentrations prevailing in the intestine. In rodents, the CD36 protein disappears early from the luminal side of intestinal villi during the postprandial period, but only when the diet contains lipids. This drop is significant 1 h after a lipid supply and associates with ubiquitination of CD36. Using CHO cells expressing CD36, it is shown that the digestion products LCFA and diglycerides trigger CD36 ubiquitination. In vivo treatment with the proteasome inhibitor MG132 prevents the lipid-mediated degradation of CD36. In vivo and ex vivo, CD36 is shown to be required for lipid activation of ERK1/2, which associates with an increase of the key chylomicron synthesis proteins, apolipoprotein B48 and microsomal triglyceride transfer protein. Therefore, intestinal CD36, possibly through ERK1/2-mediated signaling, is involved in the adaptation of enterocyte metabolism to the postprandial lipid challenge by promoting the production of large triglyceride-rich lipoproteins that are rapidly cleared in the blood. This suggests that CD36 may be a therapeutic target for reducing the postprandial hypertriglyceridemia and associated cardiovascular risks.CD36 (also known as fatty acid translocase) is a transmembrane glycoprotein expressed in many tissues. It is a multifunctional protein homologous to scavenger receptor class B, type I. CD36 facilitates uptake of long chain fatty acids (LCFA) 2 in cardiomyocytes (1) and adipocytes (2, 3) and that of oxidized LDL by macrophages (4). CD36 is involved in platelet aggregation by binding thrombospondin and collagen (5), phagocytosis of apoptotic cells by macrophages (6), and the cytoadhesion of erythrocytes infected with Plasmodium falciparum (7). In addition, CD36 has recently been shown to play a role in taste perception of dietary fatty acid on the tongue by triggering a cell signaling cascade (8 -10). Deletion of CD36 in mice highlighted the importance of this protein for optimal utilization of dietary lipids. Significant impairment in the uptake of LCFA by skeletal muscle, heart, and adipose tissues was shown (2). Insulin-and exercise-dependent translocation of CD36 from an intracellular pool to the sarcolemna was documented and postulated to increase the muscle efficiency by allowing adaptive changes in LCFA uptake and utilization (11, 12). Finally, CD36-deficient mice exhibit a loss of the spontaneous preference for lipid-rich foods and a decrease of orosensory-mediated rise in digestive secretions (8, 9). In humans, variants in the CD36 gene have been associated with abnormalit...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.