ABSTRACT. In this paper, crack propagation in Advanced Gas-cooled Reactor (AGR) graphite bricks with ageing properties is studied using the eXtended Finite Element Method (X-FEM). A parametric study for crack propagation, including the influence of different initial crack shapes and propagation criteria, is conducted. The results obtained in the benchmark study show that the crack paths from X-FEM are similar to the experimental ones. The accuracy of the strain energy release rate computation in a heterogeneous material is also evaluated using a finite difference approach. Planar and non-planar 3D crack growth simulations are presented to demonstrate the robustness and the versatility of the method utilized. Finally, this work contributes to the better understanding of crack propagation behaviour in AGR graphite bricks and so contributes to the extension of the AGR plants' lifetimes in the UK by reducing uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.