Residue concentrations of fifteen antibiotics including sulfonamides, quinolones, macrolides, β-lactams, and trimethoprim in lakes from Hanoi metropolitan area, Vietnam, were analyzed using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS-MS) to elucidate their occurrence and behavior in urban environment. For surface water, the average concentrations of five antibiotic classes decreased in the order: sulfonamides (117.9 ng/L) > β-lactams (31.28 ng/L) > quinolones (20.19 ng/L) > macrolides (17.74 ng/L) > trimethoprim (8.93 ng/L). While the highest concentration of SMX was detected at 806.5 ng/L in surface water, those obtained in sediment were only at 1.35 ng/g because of their high solubility in water. Quinolones were found at a maximal concentration of 158.7 ng/L for OFL in water phase whereas those in sediment phase were 4,017 ng/g due to their great affinity in sediment. These findings revealed the different fate and release mechanisms of each antibiotic group in the environment. The ecological risk assessment implied some targeted compounds, and in particular, OFL and AZM could pose high risks to algae in the aquatic ecosystem.
Per- and polyfluoroalkyl substances (PFASs) have attracted great concern because of their great recalcitrant nature and harmful environmental health effects. Eight PFASs in wastewater from craft villages and industrial environments of Vietnam were analyzed using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) with negative electrospray ionization interface. For analysis of PFASs, percent recoveries ranged from 87 to 112, and MQL varied from 0.19 ng/L to 0.49 ng/L. Treated wastewater samples from eight metal-plating and eight textile-dyeing factories were collected for analysis of PFASs. Concentrations of PFOS in wastewater samples obtained from metal-plating factories with decorative plating stage were found at a range of 0.73–18.91 ng/L. For textile-dyeing factories, PFOA and/or PFHxA, which were present in all effluent wastewater samples, varied from 0.37 to 15.96 ng/L and 1.07 to 43.58 ng/L, respectively. Sixty surface water samples in four locations of the textile dyeing craft villages, a recycling plastic village, a paper recycling village, and 10 river water samples in the control area (a rural area without specific waste sources) were collected and analyzed for PFASs. The total concentrations of eight PFASs in surface water samples of craft villages ranged from 0.83 to 58.2 ng/L, which were significantly higher than those in the control area. PFOA, PFHxA, and PFOS are the three most dominant congeners in wastewater taken from craft villages with the highest concentrations of 27.4, 23.8, and 7.36 ng/L, respectively. The environmental risks posed by PFASs in surface water from craft villages were mainly in a range of extremely low to low level, particularly a few points have high ecological risks of PFDoA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.