An energy-efficient Magneĺi phase Ti 4 O 7 reactive electrochemical membrane (REM) was applied for the oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Approximately 5-log removal of these compounds was achieved in a single pass through the REM with residence times of ∼11 s at 3.3 V/SHE for PFOA and 3.6 V/SHE for PFOS. The permeate concentrations of PFOA and PFOS were <86 and 35 ng L −1 , from initial concentrations of 4.14 and 5 mg L −1 , respectively. The highest removal rates were 3415 ± 203 μmol m −2 h −1 for PFOA and 2436 ± 106 μmol m −2 h −1 for PFOS at a permeate flux of 720 L m −2 h −1 (residence times of ∼3.8 s). The levels of energy consumption (per log removal) to remove PFOA and PFOS to below the detection limits were 5.1 and 6.7 kWh m −3 , respectively. These values are the lowest reported for electrochemical oxidation and approximately an order of magnitude lower than those reported for other technologies (i.e., ultrasonication, photocatalysis, vacuum ultraviolet photolysis, and microwave−hydrothermal decomposition), demonstrating the promise of the REM technology for water treatment applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.