Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days) evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT) characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility—Nrf2 absence) in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2−/−) (>22 months) were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade). The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α) with decreased GSH-NEM immuno-fluorescence signals. While Nrf2−/− mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2−/− on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc) (p < 0.05) in the Nrf2−/− hearts in relation to WT mice. Moreover, the aged Nrf2−/− mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in fractional shortening, pronounced ST segment, and J wave elevation upon CEE compared to age-matched WT littermates. In conclusion, our findings indicate that while the aged WT and Nrf2 knockout animals both exhibit hypertrophy after CEE, the older Nrf2 knockouts showed ventricular remodeling coupled with profound cardiac functional abnormalities and diastolic dysfunction.
Breast cancer is identified as the highest cause of death in women suffering from cancer. Early diagnosis is the key to increase the survival of breast cancer victims. Molecular diagnosis using biomarkers have advanced much in the recent years. The cost involved in such diagnosis is not affordable for most of the population. The concept being investigated here is to realize a simple diagnosis system for screening cancer by way of a blood test utilizing a miRNA based biomarker with a complementary molecular beacon probe. A microfluidic platform was designed and attached with a fluorescence reader, which is portable and cost effective. Experiments were performed with 51 blood samples of which 30 were healthy and 21 were positive for breast cancer, collected against institutional human ethical clearance, IHEC 16/180-7-9-2016. miRNA 21 was chosen as the biomarker because it is overexpressed 4-fold in the serum of breast cancer patients. This work involved design of an experiment to prove the concept of miRNA over expression followed by detection of miRNA 21 using the microfluidic platform attached with a fluorescence reader and validation of the results using quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results obtained from the microfluidic device concurred with qRT-PCR results. The device is suitable for point-of-care application in a mass-screening programme. The study also has revealed that the stage of the cancer could be indicated by this test, which will be further useful for deciding a therapeutic regime.
BackgroundOxidative stress has been linked to heart failure (HF) in humans. Antioxidant-based treatments are often ineffective. Therefore, we hypothesize that some of the HF patients might have a reductive stress (RS) condition. Investigating RS-related mechanisms will aid in personalized optimization of redox homeostasis for better outcomes among HF patients.MethodsBlood samples were collected from HF patients (n = 54) and healthy controls (n = 42) and serum was immediately preserved in − 80 °C for redox analysis. Malondialdehyde (MDA; lipid peroxidation) levels by HPLC, reduced glutathione (GSH) and its redox ratio (GSH/GSSG) using enzymatic-recycling assay in the serum of HF patients were measured. Further, the activities of key antioxidant enzymes were analyzed by UV–Vis spectrophotometry. Non-invasive echocardiography was used to relate circulating redox status with cardiac function and remodeling.ResultsThe circulatory redox state (GSH/MDA ratio) was used to stratify the HF patients into normal redox (NR), hyper-oxidative (HO), and hyper-reductive (HR) groups. While the majority of the HF patients exhibited the HO (42%), 41% of them had a normal redox (NR) state. Surprisingly, a subset of HF patients (17%) belonged to the hyper-reductive group, suggesting a strong implication for RS in the progression of HF. In all the groups of HF patients, SOD, GPx and catalase were significantly increased while GR activity was significantly reduced relative to healthy controls. Furthermore, echocardiography analyses revealed that 55% of HO patients had higher systolic dysfunction while 62.5% of the hyper-reductive patients had higher diastolic dysfunction.ConclusionThese results suggest that RS may be associated with HF pathogenesis for a subset of cardiac patients. Thus, stratification of HF patients based on their circulating redox status may serve as a useful prognostic tool to guide clinicians designing personalized antioxidant therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.