The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.
We conducted an inventory of the fern, lycophyte and non-palm monocotyledon ground-herbs of terra firme riparian forests in the lower Tapajós region of the Brazilian Amazon. Eight 1.5 × 250 m plots, totaling 0.3 hectares, were surveyed along the watersheds of the Cupari and Curuá-Una rivers, located at the Tapajós National Forest, Pará, Brazil. To characterize the ground-herb community, we calculated species richness, abundance and Fisher’s alpha for each plot. To analyze turnover, we compared composition among plots by pairwise Bray-Curtis distance. In total, we sampled 3,130 individuals, 58 species, 27 genera and 20 families of riparian ground-herbs. Marantaceae (14 spp) was the richest family and Poaceae the most abundant family (738 individuals). The fern Triplophyllum glabrum (Tectariaceae) was the most frequent species, observed in 87.5 % of plots. Ground-herbs communities in the studied area have high species turnover, making it necessary to invest time and resources to adequately characterize and manage riparian habitats. The ground-herb community composition observed in the riparian zone here resembles that of other non-riparian forested sites in the Amazon with the plant families Marantaceae, Pteridaceae and Poaceae generally being the most commonly represented in the Amazonian ground-herb stratum. We highlight the importance of herb inventories, especially in conservation units.
Understorey herbs form a diverse and understudied plant assemblage in tropical forests. Although several studies and research teams have long been dedicated to the study of this conspicuous vegetation component in Amazonia, no effort to unify the data has been undertaken to date. In contrast to trees and other life forms for which major data compilations already exist, a unified database dedicated to herbs is still lacking. Part of the problem is in defining what is a herb and how to effectively sample herb assemblages. In this article, we describe the database HERBase, an exhaustive compilation of published and unpublished data on herb inventories in Amazonia. We also describe the structure, functioning, and guidelines for data curation and integration in HERBase. We were able to compile information from 1381 plots from all six Amazonian geographic regions. Based on this dataset, we describe and discuss sampling and knowledge gaps, priority areas for new collections, and recommend sampling protocols to facilitate data integration in the future. This novel database provides a unique biodiversity data repository on understorey herbs that will enable new studies on community ecology and biogeography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.