This study investigated the influence of ceramic compositions on Knoop Hardness Number (KHN) immediately and 24 h after polymerization and the effect of activation modes on the KHN of a resin cement. Ten Panavia F 2.0 resin cement discs were activated either directly using curing light, or chemically without light, or through 1.2-thick ceramic discs. The following ceramics were evaluated: Duceram, Cergogold, IPS Empress, IPS Empress 2, Procera, Cercon, In Ceram Alumina and In Ceram Zirconia. The KHN was obtained immediately and after 24-h testing time. Two-way ANOVA and Tukey's test were performed for statistical analysis (p<0.05). Direct activation showed higher KHN than activation through ceramics and chemical activation for both immediate and 24-h post activation. The KHN for 24-h post activation time was higher than that of the immediate post activation time except for the direct activation mode. The glass and di-silicate based ceramics showed higher KHN than alumina- and zirconia-based ceramics, immediately and after 24-h. The reinforced and opaque ceramics had the lowest KHN. The ceramic composition resulted in light attenuation, lower polymerization and lower KHN, and the 24-h testing time promoted an improvement of KHN except for direct activation mode.
This in vitro study aimed to evaluate a pH-cycling model for simulation of caries-affected dentin (CAD) surfaces, by comparing the bond strength of etch-and-rinse adhesive systems on sound and artificially-created CAD. Dentin substrates with different mineral contents and morphological patterns were created by submitting buccal bovine dentin to the following treatments: (1) immersion in artificial saliva during the experimental period (sound dentin, SD), or (2) induction to a CAD condition by means of a dynamic pH-cycling model (8 cycles, demineralization for 3 h followed by mineralization for 45 h). The bond strength of Excite or Prime and Bond NT adhesive systems was assessed using the microtensile bond strength (microTBS) test. Dentin microhardness was determined by cross-sectional Knoop evaluations. Resin-dentin morphology after the treatments was examined by scanning electron microscopy. SD produced significantly higher microTBS than CAD for both adhesives evaluated, without differences between materials. CAD exhibited lower microhardness than SD. Morphological analysis showed marked distinctions between SD and CAD bonded interfaces. Under the conditions of this study, differences in morphological pattern and dentin mineral content may help to explain resin-dentin bond strengths. The proposed pH-cycling model may be a suitable method to simulate CAD surfaces for bonding evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.