Ribeiro, BG, Morales, AP, Sampaio-Jorge, F, Barth, T, de Oliveira, MBC, Coelho, GMdO, and Leite, TC. Caffeine attenuates decreases in leg power without increased muscle damage. J Strength Cond Res 30(8): 2354-2360, 2016-Caffeine ingestion has been shown to be an effective ergogenic aid in several sports. Caffeine administration may increase exercise capacity, which could lead to a greater degree of muscle damage after exercise. This was a randomized, double-blind, placebo-controlled crossover study. Six male handball athletes ingested placebo (PLA) or caffeine (CAF) (6 mg·kg body mass) capsules on 2 different occasions. Sixty minutes after ingestion of the capsules, serum CAF levels were evaluated. Thereafter, all participants performed a protocol of vertical jumps (VJs). The protocol consisted of 4 sets of 30 seconds of continuous VJs with 60 seconds of recovery between sets. Blood lactate (LAC) and creatine kinase (CK) levels were determined before and after the protocol. We found significant differences in serum CAF levels between PLA (0.09 ± 0.18 µg·ml) vs. CAF (6.59 ± 4.44 µg·ml) (p < 0.001). Caffeine elicited a 5.23% (p ≤ 0.05) improvement in the leg power compared with PLA. The CAF trial displayed higher LAC (p ≤ 0.05) compared with PLA (6.26 ± 2.01 vs. 4.39 ± 2.42 mmol·L, respectively) after protocol of VJs, whereas no difference in CK was observed between trials (p > 0.05). These results indicate that immediate ingestion of CAF (6 mg·kg body weight) can reduce the level of muscle fatigue and preserve leg power during the test, possibly resulting in increase in LAC. There was no increase in muscle damage, which indicates that immediate administration of (6 mg·kg body weight) CAF is safe. Thus, nutritional interventions with CAF could help athletes withstand a greater physiological overload during high-intensity training sessions. The results of this study would be applicable to sports and activities that require repetitive leg power.
A CE method was developed and validated for the stereoselective determination of midodrine and desglymidodrine in Czapek culture medium to be applied to a stereoselective biotransformation study employing endophytic fungi. The electrophoretic analyses were performed using an uncoated fused-silica capillary and 70 mmol/L sodium acetate buffer solution (pH 5.0) containing 30 mmol/L heptakis (2, 3, 6-tri-O-methyl)-beta-CD as running electrolyte. The applied voltage and temperature used were 15 kV and 15 degrees C, respectively. The UV detector was set at 200 nm. The sample preparation was carried out by liquid-liquid extraction using ethyl acetate as extractor solvent. The method was linear over the concentration range of 0.1-12 microg/mL for each enantiomer of midodrine and desglymidodrine (r> or =0.9975). Within-day and between-day precision and accuracy evaluated by RSDs and relative errors, respectively, were lower than 15% for all analytes. The method proved to be robust by a fractional factorial design evaluation. The validated method was used to assess the midodrine biotransformation to desglymidodrine by the fungus Phomopsis sp. (TD2), which biotransformed 1.1% of (-)-midodrine to (-)-desglymidodrine and 6.1% of (+)-midodrine to (+)-desglymidodrine.
Hollow fiber liquid-phase microextraction and CE were applied for the determination of albendazole sulfoxide (ASOX) enantiomers in liquid culture medium after a fungal biotransformation study. The analytes were extracted from 1 mL of liquid culture medium spiked with the internal standard (rac-hydroxychloroquine) and buffered with 0.50 mol/L phosphate buffer, pH 10. The analytes were extracted into 1-octanol impregnated in the pores of the hollow fiber, and into an acid acceptor solution inside the polypropylene hollow fiber. The electrophoretic separations were carried out in 0.05 mol/L tris(hydroxymethyl)aminomethane buffer, pH 9.3, containing 3.0% w/v sulfated-β-CD (S-β-CD) with a constant voltage of +15 kV and detection at 220 nm. The method was linear over the concentration range of 250-5000 ng/mL for each ASOX enantiomer. Within-day and between-day assay precision and accuracy for the analytes were studied at three concentration levels and the values of RSD% and relative error % were lower than 15%. The developed method was applied for the determination of ASOX after a biotransformation study employing the endophytic fungus Penicillium crustosum (VR4). This study showed that the endophytic fungus was able to metabolize the albendazole to ASOX enantioselectively. In addition, it was demonstrated that hollow fiber liquid-phase microextraction coupled to CE can be an excellent and environmentally friendly technique for the analysis of samples obtained in biotransformation studies.
(-)-grandisin is a tetrahydrofuran lignan that displays important biological properties, such as trypanocidal, anti-inflammatory, cytotoxic, and antitumor activities, suggesting its utility as a potential drug candidate. One important step in drug development is metabolic characterization and metabolite identification. To perform a biotransformation study of (-)-grandisin and to determine its kinetic properties in humans, a high performance liquid chromatography (HPLC) method was developed and validated. After HPLC method validation, the kinetic properties of (-)-grandisin were determined. (-)-grandisin metabolism obeyed Michaelis-Menten kinetics. The maximal reaction rate (Vmax ) was 3.96 ± 0.18 µmol/mg protein/h, and the Michaelis-Menten constant (Km ) was 8.23 ± 0.99 μM. In addition, the structures of the metabolites derived from (-)-grandisin were characterized via gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis. Four metabolites, 4-O-demethylgrandisin, 3-O-demethylgrandisin, 4,4'-di-O-demethylgrandisin, and a metabolite that may correspond to either 3,4-di-O-demethylgrandisin or 3,5-di-O-demethylgrandisin, were detected. CYP2C9 isoform was the main responsible for the formation of the metabolites. These metabolites have not been previously described, demonstrating the necessity of assessing (-)-grandisin metabolism using human-derived materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.